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Abstract

Let (G, µ) be a uniformly elliptic random conductance graph on Zd with a Poisson point process of
particles at time t = 0 that perform independent simple random walks. We show that inside a cube QK of
side length K , if all subcubes of side length ℓ < K inside QK have sufficiently many particles, the particles
return to stationarity after cℓ2 time with a probability close to 1. We show that in this setup, an infection
spreads with positive speed in any direction. Our framework is robust enough to allow us to also extend the
result to infection with recovery.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the graph G = (Zd , E), d ≥ 2 to be the d-dimensional integer lattice, with
edges between nearest neighbors: for x, y ∈ Zd we have (x, y) ∈ E iff ∥x − y∥1 = 1. Let
{µx,y}(x,y)∈E be a collection of i.i.d. non-negative weights, which we call conductances. In this
paper, conductances will always be symmetric, soµx,y = µy,x for all (x, y) ∈ E . We also assume
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that the conductances are uniformly elliptic: that is,

there exists deterministic CM > 0, such that

µx,y ∈ [C−1
M ,CM ] for all (x, y) ∈ E, P-a.s. (1)

We say x ∼ y if (x, y) ∈ E and define µx =
∑

y∼xµx,y . At time 0, consider a Poisson point
process of particles on Zd , with intensity measure λ(x) = λ0µx for some constant λ0 > 0 and all
x ∈ Zd . That is, for each x ∈ Zd , the number of particles at x at time 0 is an independent Poisson
random variable of mean λ0µx . Then, let the particles perform independent continuous-time
simple random walks (CSRW) on the weighted graph so that a particle at x ∈ Zd jumps to a
neighbor y ∼ x at rate µx,y

µx
. It follows from the thinning property of Poisson random variables

that the system of particles is in stationarity; thus, at any time t , the particles are distributed
according to a Poisson point process with intensity measure λ.

We study the spread of an infection among the particles. Assume that at time 0 there is at
least one particle at the origin,2 all particles at the origin are infected, and all other particles are
uninfected. Then an uninfected particle gets infected as soon as it shares a site with an infected
particle. Our first result establishes that the infection spreads with positive speed.

Theorem 1. Let {µx,y}(x,y)∈E be i.i.d. satisfying (1). For any time t ≥ 0, let It be the position of
the infected particle that is furthest away from the origin. Then

lim inf
t→∞

∥It∥1

t
> 0 almost surely.

The above result has been established on the square lattice (i.e., µx,y = 1 for all (x, y) ∈ E)
by Kesten and Sidoravicius [9] via an intricate multi-scale analysis; see also [10] for a shape
theorem. In a companion paper [7], we develop a framework which can be used to analyze
processes in this setting without the need of carrying out a multi-scale analysis from scratch. We
prove our Theorem 1 via this framework, showing the applicability of our technique from [7].
We also apply this technique to analyze the spread of an infection with recovery. Let the setup
be as before, but now each infected particle independently recovers and becomes uninfected at
rate γ for some fixed parameter γ > 0. After recovering, a particle becomes again susceptible to
the infection and gets infected again whenever it shares a site with an infected particle. Our next
result shows that if γ is small enough, then with positive probability there will be at least one
infected particle at all times. When this happens, we also obtain that the infection spreads with
positive speed.

Theorem 2. Let {µx,y}(x,y)∈E be i.i.d. satisfying (1). For any λ0 > 0, there exists γ0 > 0 such
that, for all γ ∈ (0, γ0), with positive probability, the infection does not die out. Furthermore,
there are constants c1, c2, c3 > 0 such that

P[∥It∥1 ≥ c1t for all t ≥ c3] ≥ c2,

where It is the position of the infected particle that is furthest away from the origin at time t. We
set It = 0 if the infection dies out before t.

The challenge in this setup comes from the heavily dependent structure of the model. Though
particles move independently of one another, dependencies do arise over time. For example, if

2 We can without loss of generality add an infected particle to the origin, since our results are based on increasing
events. See Section 5 for details.
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a ball of radius R centered at some vertex x of the graph turns out to have no particles at time
0, then the ball B(x, R/2) of radius R/2 centered at x , will continue to be empty of particles up
to time R2, with positive probability. In particular, the probability that the (d + 1)-dimensional,
space–time cylinder B(x, R/2) × [0, R2] has no particle is at least exp{−cRd

} for some constant
c, which is just a stretched exponential in the volume of the cylinder. On the other hand, one
expects that, after time t ≫ R2, the set of particles inside the ball will become “close” to
stationarity.

To deal with dependences, one often resorts to a decoupling argument, showing that two local
events behave roughly independently of each other, provided they are measurable according to
regions in space time that are sufficiently far apart. We will obtain such an argument by extending
a technique which we call local mixing, and which was introduced in [13]. The key observation
is the following. Consider a cube Q ⊆ Zd , tessellated into subcubes of side length ℓ > 0. For
simplicity assume for the moment that µx,y = 1 for all (x, y) ∈ E . Suppose that at some time
t , the configuration of particles inside Q is dense enough, in the sense that inside each subcube
there are at least cℓd particles, for some constant c > 0. Regardless of how the particles are
distributed inside Q, as long as the subcubes are dense, we obtain that at some time t + c′ℓ2, not
only particles had enough time to move out of the subcubes they were in at time t , but also we
obtain that the configuration of particles inside “the core” of Q (i.e., away from the boundary of
Q) stochastically dominates a Poisson point process of intensity (1 − ϵ)cℓd that is independent
of the configuration of particles at time t . Moreover, the value ϵ can be made arbitrarily close
to 0 by setting c′ large enough. In words, we obtain a configuration at time t + c′ℓ2 inside the
core of Q that is roughly independent of the configuration at time t , and is close to the stationary
distribution. To the best of our knowledge, the idea of local mixing in such settings originated
in the work of Sinclair and Stauffer [13], and was later applied in [11,14]. This idea was then
extended with the introduction of soft local times by Popov and Teixeira [12] (see also [8]), and
applied to other processes, such as random interlacements.

Our second main goal in this paper is to show that this local mixing result can be obtained in
a larger setting, in which a local CLT, which plays a crucial role in the proof3 of [13,11,8],
might not hold or only holds in the limit as time goes to infinity, with no good control on
the convergence rate. This is precisely the situation in our setting, where the weights µx,y are
not all identical to 1. To work around that, we will show that local mixing can be obtained
whenever a so-called Parabolic Harnack Inequality holds, and we have some good estimates on
the displacement of random walks.

For the result below, we can impose slightly weaker conditions on µx,y . Let pc be the critical
probability for bond percolation on Zd . Assume that µx,y are i.i.d. and that, for each (x, y) ∈ E ,
we have

P[µx,y = 0] < pc and µx,y satisfies (1) whenever µx,y > 0. (2)

For two regions Q′
⊆ Q ⊂ Zd , we say that Q′ is x away from the boundary of Q if the

distance between Q′ and Qc is at least x . We say a cube of side-length a is tessellated into
subcubes of side-length b, if a is a multiple of b and the union of the subcubes equals the cube
of side-length a.

Theorem 3. Let {µx,y}(x,y)∈E be i.i.d. satisfying (2). There exist positive constants c1, c2, c3,
c4, c5 such that the following holds. Fix K > ℓ > 0 and ϵ ∈ (0, 1). Consider a cube Q of

3 The results of [13,11] are in the setting of Brownian motions on Rd , but can be adapted in a straightforward way to
random walks on Zd with µx,y = 1 for all (x, y) ∈ E by using the local CLT.
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side-length K , tessellated into subcubes (Ti )i of side length ℓ. Assume each subcube Ti contains
at least β

∑
x∈Ti

µx particles for some β > 0, and let ∆ ≥ c1ℓ
2ϵ−c2 . If ℓ is large enough, then

after the particles move for time ∆, we obtain that within a region Q′
⊆ Q that is at least c3ℓϵ

−c4

away from the boundary of Q, the particles dominate an independent Poisson point process of
intensity measure ν(x) = (1 − ϵ)βµx , x ∈ Q′, with probability at least

1 −

∑
y∈Q′

exp
{
−c5βµyϵ

2∆d/2} .
We will prove a more detailed version of this theorem in Section 3 (see Theorem 4). Although

we only prove the result for the case of conductances on the square lattice, Theorem 3 holds for
more general graphs. The theorem holds for any graph G and any region Q of G that can be
tessellated into subregions of diameter at most ℓ whenever the particles in each such subregion
are dense enough, the so-called parabolic Harnack inequality holds for G and we have estimates
on the displacement of random walks on G. We discuss some extensions in Section 4.

The structure of this paper is as follows. In Section 2, we formally define the family of graphs
we consider for local mixing and present results concerning the parabolic Harnack inequality,
heat kernel bounds and exit times for random walks on such graphs. In Section 3, we state a
more precise version of Theorem 3 and prove it. In Section 4 we prove an extension of the
local mixing result to random walks whose displacement is conditioned to be bounded, which is
particularly useful in applications [13,7]. In Section 5, we use the local mixing result and results
from our companion paper [7] to prove Theorems 1 and 2 for graphs satisfying (1).

2. Heat kernel estimates and exit times

In this section, we consider a simple, infinite connected graph G = (V, E), with uniformly
bounded degrees. For x, y ∈ V , let |x − y| denote the graph distance between x and y in G.
In order to avoid potentially confusing notation, we allow ourselves a slight abuse of notation
and also use |x − y| to denote the graph distance when dealing with non-Euclidian graphs. For
x ∈ V , let B(x, r ) = {y ∈ V : |x − y| ≤ r} be the ball of radius r centered at x . We
consider non-negative weights (conductances) (µx,y)(x,y)∈E , that are symmetric. As in Section 1,
we denote by x ∼ y whenever x, y ∈ V are neighbors in G, and define µx =

∑
y∼xµx,y . We

also extend µ to a measure on V . The reader may think of V as Zd and µx,y being i.i.d. random
variables satisfying (2). We keep our notation in greater generality as we want to highlight the
exact conditions we need for our results.

Assume the existence of d ≥ 1 and CU such that

µ(B(x, r )) ≤ CU rd , for all r ≥ 1, and x ∈ V . (3)

We consider a continuous time simple random walk on the weighted graph G := (G, µ),
which jumps from vertex x to vertex y at rate µx,y

µx
(we consider µx,y

µx
= 0 whenever µx = 0).

More formally, for any function f : V → R, let

L f (x) = µ−1
x

∑
y∼x

µx,y( f (y) − f (x)), (4)

and define the random walk started at vertex x as the Markov process Y = (Yt , t ∈

[0,∞),Px , x ∈ V ) with generator L. Its heat kernel on the graph is defined as

qt (x, y) =
Px (Yt = y)

µy
, for any x, y ∈ V . (5)
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We will say that a particle walks along G if it is a Markov process with generator L as defined
above. We now state several definitions from [3] which we use throughout the paper.

Definition 1 (Very Good Balls). Let CV , CP and CW ≥ 1 be fixed constants. We say B(x, r ) is
(CV ,CP ,CW )-good if:

µ(B(x, r )) ≥ CV rd ,

and the weak Poincaré inequality∑
y∈B(x,r )

( f (y) − f̄B(x,r ))2µy ≤ CPr2
∑

y,z∈B(x,CW r ),z∼y

( f (y) − f (z))2µyz

holds for every f : B(x,CW r ) → R, where f̄B(x,r ) = µ(B(x, r ))−1∑
y∈B(x,r ) f (y)µy is the

weighted average of f in B(x, r ). Furthermore, we say B(x, R) is (CV ,CP ,CW )-very good if
there exists NB = NB(x,R) ≤ R1/(d+2) such that for all r ≥ NB , B(y, r ) is good whenever
B(y, r ) ⊆ B(x, R). We assume that NB ≥ 1.

For the remainder of the paper we assume that d ≥ 2, fix CU , CV , CP and CW and take
G = ((V, E), µ) to satisfy (3).

We are now ready to present some key results from [4] that control the variation of the random
walk density function. We will also present a result about random walk exit times which was
initially shown in [3] for Bernoulli percolation clusters and then generalized to our setup in [4].
The first result gives Gaussian upper and lower bounds for the heat kernel for very good balls.

Proposition 1 ([4, Theorem 2.2]). Assume the weights µx,y satisfy (1) or (2). Fix a vertex
x ∈ V . Suppose there exists R1 = R1(x) such that B(x, R) is very good with N 3(d+2)

B(x,R) ≤ R for
every R ≥ R1. Then there exist positive constants c1, c2, c3, c4 such that if t ≥ R2/3

1 , we obtain

qt (x, y) ≤ c1t−d/2e−c2|x−y|
2/t , for all y ∈ V with |x − y| ≤ t

and

qt (x, y) ≥ c3t−d/2e−c4|x−y|
2/t , for all y ∈ V with |x − y|

3/2
≤ t.

Now define the space–time regions

Q(x, R, T ) = B(x, R) × (0, T ],
Q−(x, R, T ) = B(x, R

2 ) × [ T
4 ,

T
2 ]

and

Q+(x, R, T ) = B(x, R
2 ) × [ 3T

4 , T ].

We denote t + Q(x, R, T ) = B(x, R) × (t, t + T ] and similarly t + Q−(x, R, T ) =

B(x, R
2 ) × [t +

T
4 , t +

T
2 ] and t + Q−(x, R, T ) = B(x, R

2 ) × [t +
3T
4 , t + T ]. We call a function

u : V × R → R caloric on Q if it is defined on Q = Q(x, R, T ) and
∂

∂t
u(x̂, t̂) = Lu(x̂, t̂) for all (x̂, t̂) ∈ Q.

We say the parabolic Harnack inequality (PHI) holds with constant CH for Q = Q(x, R, T )
if whenever u = u(x, t) is non-negative and caloric on Q, then

sup
(x̂,t̂)∈Q−(x,R,T )

u(x̂, t̂) ≤ CH inf
(x̂,t̂)∈Q+(x,R,T )

u(x̂, t̂).
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It is well known that the heat kernel of a random walk on G started at x is a caloric function;
in fact taking x̂ = 0 and u(x, t) = qt (0, x) we have

∂

∂t
qt (0, x) = lim

dt→0

1
µx

∑
y∼x P0(Yt = y)Py(Ydt = x) − P0(Yt = x)Px (Ydt ̸= x)

dt

=
1
µx

(∑
y∼x

P0(Yt = y)
µy,x

µy
−

∑
y∼x

µx,y

µx
P0(Yt = x)

)

=
1
µx

∑
y∼x

µx,y(qt (0, y) − qt (0, x)) = Lqt (0, x).

The main result from [4] shows that the PHI holds in regions that are very good according to
Definition 1.

Proposition 2 ([4, Theorem 3.1]). Assume the weights µx,y satisfy (1) or (2). Let x0 ∈ V .
Suppose that R1 ≥ 16 and B(x0, R1) is (CV ,CP ,CW )-very good with N 2d+4

B(x0,R1) ≤ R1/(2 log R1).
Then there exists a constant CH > 0 such that the PHI holds for Q(x1, R, R2) for any
x1 ∈ B(x0, R1/3) and for R such that R log R = R1.

A direct consequence of the PHI is the following known proposition, which when applied to
the caloric function u(x, t) = qt (0, x) gives that qt (0, x) and qt (0, y) are very similar to each
other when x and y are close by. This property will be crucial for our proof of local mixing, so
we give the proof of this proposition for completeness.

Proposition 3. Assume the weights µx,y satisfy (1) or (2). Let x0 ∈ V . Suppose that there exists
s(x0) ≥ 0 so that for all R ≥ s(x0), the PHI holds with constant CH > 1 for Q(x0, R, R2). Let
Θ = log2(CH/(CH − 1)), and for x, y ∈ V define

ρ(x0, x, y) = s(x0) ∨ |x0 − x | ∨ |x0 − y|.

There exists a constant c > 0 such that the following holds. Let r0 ≥ 2s(x0) and suppose that
u = u(x, t) is caloric in Q = Q(x0, r0, r2

0 ). Then for any x1, x2 ∈ B(x0,
1
2r0) and any t1, t2 such

that r2
0 − ρ(x0, x1, x2)2

≤ t1, t2 ≤ r2
0 we have

|u(x1, t1) − u(x2, t2)| ≤ c
(
ρ(x0, x1, x2)

r0

)Θ

sup
(t,x)∈Q+(x0,r0,r2

0 )

|u(t, x)|. (6)

Proof. For any integer k ≥ 0, set rk = 2−kr0, and let

Q(k) = (r2
0 − r2

k ) + Q(x0, rk, r2
k ),

Q+(k) = (r2
0 − r2

k ) + Q+(x0, rk, r2
k )

and

Q−(k) = (r2
0 − r2

k ) + Q−(x0, rk, r2
k ).

This gives that Q+(k) = Q(k + 1). Now take k ≥ 1 small enough, so that rk ≥ 2s(x0). If we
apply the PHI to the non-negative caloric functions −u + supQ(k)u and u − infQ(k)u, we get the
inequalities

sup
Q(k)

u − inf
Q−(k)

u ≤ CH (sup
Q(k)

u − sup
Q+(k)

u)
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and

sup
Q−(k)

u − inf
Q(k)

u ≤ CH ( inf
Q+(k)

u − inf
Q(k)

u).

Adding them together and using supQ−(k)u − infQ−(k)u ≥ 0 gives

sup
Q(k)

u − inf
Q(k)

u ≤ CH (sup
Q(k)

u − inf
Q(k)

u) − CH ( sup
Q+(k)

u − inf
Q+(k)

u).

Denoting by Osc(u, A) = supAu − infAu and setting δ = C−1
H , this gives

Osc(u, Q+(k)) ≤ (1 − δ) Osc(u, Q(k)). (7)

Next, take the largest m such that rm ≥ ρ(x0, x1, x2). Then, applying (7) repeatedly on
Q(1) ⊃ Q(2) ⊃ . . . Q(m) yields, since (xi , ti ) ∈ Q(m),

|u(t1, x1) − u(t2, x2)| ≤ Osc(u, Q(m)) ≤ (1 − δ)m−1 Osc(u, Q(1)).

Since

(1 − δ)m
= 2−mΘ

≤

(
2ρ(x0, x1, x2)

r0

)Θ

,

the result follows. □

We will also need to control the exit time of the random walk out of a ball of radius r , which
we define as

τ (x, r ) = inf{t : Yt ̸∈ B(x, r )}.

Proposition 4. Assume the weights µx,y satisfy (1) or (2). Let x0 ∈ V and let B(x0, R) be
(CV ,CP ,CW )-very good with N d+2

B < R. Let x ∈ B(x0,
5
9 R). There exist positive constants c1,

c2, c3, c4 such that if t , r satisfy

0 < r ≤ R and c1 N d
B(log NB)1/2r ≤ t ≤ c2 R2/ log R, (8)

then we have

Px (τ (x, r ) < t) ≤ c3 exp{−c4r2/t}. (9)

Proof. The proposition was proven for percolation clusters in [3, Proposition 3.7]. The proof for
more general G is similar and can be found in [4, Theorem 2.2a]. □

Since Propositions 1, 2 and 4 rely on very good balls and the related value NB , we can assume
a lower bound S such that if R > S, then the conditions of all three are satisfied. More formally,
we assume the following.

Assumption 1. The graph G has polynomial growth; i.e., it satisfies (3). Furthermore, there
exists a sufficiently large valued positive function S : V ↦→ R such that for all x0 ∈ V and all R1

with R1 log R1 ≥ S(x0), the ball B(x0, R1) is (CV ,CP ,CW )-very good with N 2d+4
B(x0,R1) ≤ R1. As

a consequence, Propositions 1–4 all hold for any R > S(x0).

For i.i.d. weights as defined in Section 1, we obtain the following.



3554 P. Gracar and A. Stauffer / Stochastic Processes and their Applications 129 (2019) 3547–3569

Proposition 5. If V = Zd and the weightsµx,y are i.i.d. and satisfy (1) or (2), then Assumption 1
holds. Furthermore, we have that there exist constants c, γ > 0 such that

P[S(x) ≥ n] ≤ c exp{−cnγ } for all x ∈ Zd and n ≥ 0.

If the weights µx,y are i.i.d. and satisfy (1), then Assumption 1 holds with S(x) = 1 for all x ∈ V .

Proof. When the weights µx,y satisfy (1) (i.e. are bounded away from 0 and infinity),
Delmotte [6] has shown that the heat kernel bounds from Proposition 1 and the PHI from
Proposition 2 hold for all balls B(x, R), for any R and all x . Therefore, by [4, Theorem 5.7]
we can set S(x) ≡ 1.

For the case when µx,y satisfy (2), we consider first the case when µx,y ∈ {0, 1}. Then, [3,
Theorem 1] gives the existence of the heat kernel bounds for t ≥ S(x) and [3, Lemma 2.19]
gives the required bound on its tail. [4, Theorem 2.2] then generalizes this result for weights that
satisfy (2) and proves the validity of Proposition 2, for weights satisfying either (1) or (2). □

Remark 1. In [5] it has been shown that when the weights µx,y are i.i.d. but can assume values
arbitrarily close to zero, so neither (1) nor (2) hold, it is possible to find distributions (at least
in dimensions d ≥ 5) for which Assumption 1 does not hold. Hence, even though we do not
explicitly use uniform ellipticity of µx,y in our proofs, this property has a fundamental role in
our analysis. Recent results (see, for example, [1]) have been derived to relax assumption (2), but
they do not establish all the properties we need.

Remark 2. In this paper we limit ourselves to the so-called constant speed random walk
(CSRW). Similar results to the ones listed in this section also exist for variable speed random
walks (VSRW), i.e. random walks where the jump rate from site x to site y is µx,y instead of
µx,y
µx

(see for example [1,2]). Similar to the previous remark, these results do not imply all the
properties we need, though we believe that with some additional assumptions our approach can
be applied also to the VSRW case.

3. Decoupling via local mixing

In this section, we will restrict to the case V = Zd and (x, y) ∈ E if and only if
∥x − y∥1 = 1, but we do not assume the µx,y are i.i.d. We define a cube of side length z > 0
as Qz := [−z/2, z/2]d . In the remainder of the paper, we will work with the heat kernel qt as
defined in (5). Since we allowµx,y = 0, it is possible for two sites not to be connected. To address
this we require the existence of an infinite component. Formally, we assume the following.

Assumption 2. For each (x, y) ∈ E , either µx,y = 0 or it satisfies (1) for a uniform constant CM .
Moreover, the weights µx,y are such that an infinite connected component of edges of positive
weight within G exists and contains the origin.

With this let C∞ be the infinite connected component of G that contains the origin and define

Q̃z := Qz ∩ C∞.

We note that if µx,y satisfy (1), then Assumption 2 is automatically satisfied. If instead (2)
holds We will continue to call Q̃z as a “cube”. We are now ready to state the more detailed
version of Theorem 3.
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Theorem 4. Let µx,y satisfy Assumptions 1 and 2 and let c > 0 be an arbitrary constant.
There exist constants c0, c1, C > 0 such that the following holds. Fix large enough K > ℓ > 0,
ϵ ∈ (0, 1). Consider the cube QK tessellated into subcubes (Ti )i of side length ℓ. Let (x j ) j ⊂ Q̃K

be the locations at time 0 of a collection of particles, such that each subcube T̃i contains at
least

∑
y∈T̃i

βµy particles for some β > 0. Assume that ℓ > Sd+1(x) for all x ∈ Q̃K and
sufficiently large so that

∑
y∈T̃i

βµy ≥ c for all subcubes T̃i . Let ∆ ≥ c0ℓ
2ϵ−4/Θ where Θ is as

in Proposition 3. For each j denote by Y j the location of the j th particle at time ∆. Fix K ′ > 0
such that K − K ′

≥
√
∆c1ϵ

−1/d . Then there exists a coupling Q of an independent Poisson
point process ψ with intensity measure ζ (y) = β(1 − ϵ)µy , y ∈ C∞, and (Y j ) j such that within
Q̃K ′ ⊂ Q̃K , ψ is a subset of (Y j ) j with probability at least

1 −

∑
y∈Q̃K ′

exp
{
−Cβµyϵ

2∆d/2} .
Note that, due to Proposition 5, Theorem 3 is a special case of Theorem 4, which we

prove below. In order to do so, we will use something called soft local times, which was
introduced in [12] to analyze random interlacements, following the introduction of local mixing
in [13,11,14]; see also [8] for an application of this technique to random walks on Zd .

Proposition 6. Let (Z j ) j≤J be a collection of J independent random particles on V distributed
according to a family of density functions g j : V → R, j ≤ J . Define for all y ∈ V the soft local
time function HJ (y) =

∑J
j=1ξ j g j (y), where the ξ j are i.i.d. exponential random variables of

mean 1. Let ψ be a Poisson point process on V with intensity measure ρ : V → R and define the
event E =

{
the particles belonging to ψ are a subset of (Z j ) j≤J

}
. Then there exists a coupling

between (Z j ) j≤J and ψ , such that

P [E] ≥ P [HJ (y) ≥ ρ(y), ∀y ∈ V ] .

Proof. The coupling is introduced in [12, Section 4] and proven in [12, Corollary 4.4]. A
reformulation of the construction for particles on a graph can be found in [8, Appendix A],
and our claim corresponds to [8, Corollary A.3]. □

We are now ready to prove Theorem 4.

Proof of Theorem 4. By Proposition 6, there exists a coupling Q of an independent Poisson
point process ψ with intensity measure ζ (y) = β(1 − ϵ)µy1{y∈Q̃K ′ }

and the locations of the
particles Y j , which are distributed according to the density functions f∆(x j , y) := q∆(x j , y)µy ,
y ∈ C∞, such that the particles belonging to ψ are a subset of (Y j ) j with probability at least

Q[HJ (y) ≥ βµy(1 − ϵ), ∀y ∈ Q̃K ′ ],

where HJ (y) =
∑J

j=1ξ j f∆(x j , y), (ξ j ) j≤J are i.i.d. exponential random variables with
parameter 1, and J is the number of particles inside Q̃K . We first observe that the probability of
the converse event is

Q[∃y ∈ Q̃K ′ : HJ (y) < βµy(1 − ϵ)] ≤

∑
y∈Q̃K ′

Q[HJ (y) < βµy(1 − ϵ)]

≤

∑
y∈Q̃K ′

eκµyβ(1−ϵ)EQ[exp{−κHJ (y)}],
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where we used Markov’s inequality in the last step, which is valid for any κ > 0. Let c1 be a
large positive constant which we will fix later and let

R =
√
∆c1ϵ

−1/d .

Let J ′ be a subset of {1, 2, . . . , J } such that for each T̃i , J ′ contains exactly ⌈
∑

y∈T̃i
βµy⌉ particles

that are inside T̃i . Define J ′(y) ⊆ J ′ to be the set of j ∈ J ′ such that |x j − y| ≤ R and define
H ′(y) as HJ (y) but with the sum restricted to j ∈ J ′(y). Since HJ (y) ≥ H ′(y) we get that

EQ[exp{−κHJ (y)}] ≤ EQ[exp{−κH ′(y)}]. (10)

Next, we use that the ξ j in the definition of H are independent exponential random variables to
obtain

EQ[exp{−κH ′(y)}] =

∏
j∈J ′(y)

EQ[exp{−κξ j f∆(x j , y)}]

=

∏
j∈J ′(y)

(
1 + κ f∆(x j , y)

)−1
. (11)

Using Taylor’s expansion we have that log(1 + x) ≥ x − x2 for |x | ≤
1
2 . Since ℓ ≥ S(x), we

have for all x for which |x − y| ≤ R +
√

dℓ that Proposition 1 holds, and so q∆(x, y) ≤ c2∆
−d/2

for a constant c2 > 0 and all y ∈ Q̃K ′ and all x ∈
⋃

T̃i , where the union runs across all T̃i

for which there exists j ∈ J ′(y) such that x j ∈ T̃i . Note that by definition, making the constant
c0 large ensures for ℓ ≥ S(x) that ∆ is large enough with respect to Proposition 1. Hence if
κ = Cϵ∆d/2 for the constant C = (4CU c2)−1, then

sup
x∈B(y,R+

√
dℓ)
κ f∆(x, y) = sup

x∈B(y,R+
√

dℓ)
κµyq∆(x, y) ≤ CU c2κ∆

−d/2 <
ϵ

4
.

For such a value of κ we have∏
j∈J ′(y)

(
1 + κ f∆(x j , y)

)−1
≤

∏
j∈J ′(y)

exp
{
−κ f∆(x j , y)(1 − κ f∆(x j , y))

}

≤ exp

⎧⎨⎩−

∑
j∈J ′(y)

κ f∆(x j , y)

(
1 − sup

x∈B(y,R+
√

dℓ)
κ f∆(x, y)

)⎫⎬⎭
≤ exp

⎧⎨⎩−κ
∑

j∈J ′(y)

f∆(x j , y)(1 − ϵ/4)

⎫⎬⎭ . (12)

We claim that∑
j∈J ′(y)

f∆(x j , y) ≥ βµy(1 − ϵ/2), (13)

which together with (12), (11) and (10) give that

Q
[
∃y ∈ Q̃K ′ : HJ (y) < βµy(1 − ϵ)

]
≤ exp

{
κµyβ(1 − ϵ) − κβµy(1 − ϵ/2)(1 − ϵ/4)

}
≤ exp

{
−κβµyϵ/4

}
.

Using the value of κ gives the theorem.
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It remains to show (13). For each T̃i and each particle x j ∈ T̃i , let x ′

j ∈ T̃i be such that
f∆(x ′

j , y) = maxw∈T̃i
f∆(w, y). Then, write∑

j∈J ′(y)

f∆(x j , y) ≥

∑
j∈J ′(y)

(
f∆(x ′

j , y) − | f∆(x ′

j , y) − f∆(x j , y)|
)
. (14)

We have for each T̃i∑
j∈J ′(y)
x j ∈T̃i

f∆(x ′

j , y) = max
w∈T̃i

f∆(w, y)
∑

j∈J ′(y)
x j ∈T̃i

1

≥ max
w∈T̃i

f∆(w, y)
∑
z∈T̃i

βµz

≥

∑
z∈T̃i

βµz f∆(z, y). (15)

Set R(y) to be the set of all sites z such that |z − y| ≤ R −
√

dℓ; the right hand side of this
expression is positive since by definition R is proportional to ℓ and c1 is assumed to be large.
Note that if z ∈ R(y) then for all particles x j with x ′

j = z and j ∈ J ′ we have j ∈ J ′(y). We
observe that since µz f∆(z, y) = µy f∆(y, z), we have by using (15) for each T̃i that∑

j∈J ′(y)

f∆(x ′

j , y) ≥

∑
z∈R(y)

βµz f∆(z, y)

= βµy

∑
z∈R(y)

f∆(y, z).

Then, since ℓ > Sd+1(x) we have by Proposition 4 that there exist constants c4 and c5 such that∑
j∈J ′(y)

f∆(x ′

j , y) ≥ βµyPy(τ (y, R −
√

dℓ) ≥ ∆)

≥ βµy(1 − c4 exp{−c5c2
1ϵ

−2/d
})

≥ βµy(1 − ϵ/4), (16)

where we set c1 large enough with respect to c4 and c5 for the last inequality to hold.
Now it remains to obtain an upper bound for the term

∑
j∈J ′(y)| f∆(x ′

j , y) − f∆(x j , y)|. We
define I to be the set of all i such that T̃i contains a particle x j from the set (x j ) j∈J ′(y). Then,
since ℓ > S(x), there exist positive constants CP H I and CB H such that if we apply the PHI (cf.
Proposition 3) with

r2
0 = ∆ ≥ c0ℓ

2ϵ−4/Θ (17)

for some constant c0 > d , we obtain

∑
j∈J ′(y)

| f∆(x ′

j , y) − f∆(x j , y)| =

∑
i∈I

∑
j∈J ′(y):
x j ∈T̃i

| f∆(x ′

j , y) − f∆(x j , y)|

= µy

∑
i∈I

∑
j∈J ′(y):
x j ∈T̃i

|q∆(x ′

j , y) − q∆(x j , y)|
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≤ µy

∑
i∈I

∑
j∈J ′(y):
x j ∈T̃i

CP H I ℓ
Θ

∆Θ/2 CB H∆
−d/2

≤ µy

∑
i∈I

∑
x∈T̃i

2 max
{
1, 1

c

}
βµx CP H I ℓ

Θ

∆Θ/2 CB H∆
−d/2,

where in the first inequality we replaced the supremum term coming from Proposition 3 by
its upper bound CB H∆

−d/2 from Proposition 1, and used that r0 =
√
∆ in the bound from

Proposition 3. Then∑
j∈J ′(y)

| f∆(x ′

j , y) − f∆(x j , y)| ≤ 2 max
{

1,
1
c

}
βµyCP H I CB H

∑
i∈I

∑
x∈T̃i

µxℓ
Θ∆−(d+Θ)/2

≤ 2 max
{

1,
1
c

}
βµyCP H I CB H CU RdℓΘ∆−(d+Θ)/2

≤ βµy
ϵ

4
, (18)

where the last inequality holds by using ∆ ≥ c0ℓ
2ϵ−4/Θ and setting c0 >

(2 max
{
1, 1

c

}
CP H I CB H CU cd

1 )−2/θ . Note that in order to use Proposition 3, we need to have that
each pair x j , x ′

j is contained in some ball B(x0, r0/2). This is satisfied since ∥x j − x ′

j∥ ≤
√

dℓ
and r0 is set sufficiently large by (17). Plugging (18) and (16) into (14) proves (13). □

4. Extensions

Although the estimate derived in Theorem 4 does not depend on the particles outside of QK

at time 0 when K − K ′ is sufficiently large, it still depends on the geometry of the entire graph
outside of QK . In some applications, as in our companion paper [7], one needs to apply this
coupling in many different regions of the graph simultaneously. In such cases, in order to control
dependences between different regions, it is important that the coupling procedure depends only
on the local structure of the graph. In order to do this, we will condition the particles to be inside
some large enough, but finite region while they move for time ∆. Recall that, for any ρ > 0,
Qρ = [−ρ/2, ρ/2]d is the cube of side length ρ. For any ρ > 0, we say that a random walk has
displacement in Qρ during [0,∆] if the random walk never exits x + Qρ during the time interval
[0,∆], where x is the starting vertex of the random walk.

Lemma 1. Let µx,y satisfy Assumptions 1 and 2. There exist constants c1 and c2 so that the
following holds. Let V = Zd , ℓ > 0 and consider the cube Q̃ℓ. Assume ℓ > S(x) for all x ∈ Q̃ℓ.
Let ∆ > c1ℓ

2 and ρ ≥ c2
√
∆ log∆. Consider a random walk Y that moves along G for time

∆ conditioned on having its displacement in Qρ during the time interval [0,∆]. Let x, y ∈ Q̃ℓ

with x being the starting point of the walk, and define

g(x, y) := Px
[
Y∆ = y | Y has displacement in Qρ during [0,∆]

]
.

Then there exists a constant C > 2 such that for x, y, z ∈ Q̃ℓ we have⏐⏐⏐⏐g(x, y)
µy

−
g(z, y)
µy

⏐⏐⏐⏐ ≤ CℓΘ∆−(d+Θ)/2.
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Remark 3. Note that the above bound has the same form as the one for the heat kernel of
unconditioned random walks in Proposition 3, with the supremum being bounded above by the
heat kernel bound from Proposition 1. This allows us to extend Theorem 4 to random walks
conditioned to have a bounded displacement during [0,∆].

Proof of Lemma 1. Denote by pE (ρ) the probability that a random walk started at x has
displacement in Qρ during [0,∆]. From Proposition 4 , we have that if ∆ is sufficiently big,
then

1 − pE (ρ) ≤ Px [Y exits B(x, ρ/2) during [0,∆]]

= Px (τ (x, ρ/2) < ∆)

≤ ca exp{−cbρ
2/∆}. (19)

Next, using h(x, y) := Px
[
Y∆ = y | Y exits x + Qρ during [0,∆]

]
and f∆(x, y) = Px [Y∆

= y], we can write

f∆(x, y) = g(x, y)pE (ρ) + h(x, y)(1 − pE (ρ)).

With this we have

g(x, y) ≤ f∆(x, y)
1

pE (ρ)
. (20)

Then, we can write⏐⏐⏐⏐g(x, y)
µy

−
g(z, y)
µy

⏐⏐⏐⏐ = 1{g(x,y)>g(z,y)}

(
g(x, y)
µy

−
g(z, y)
µy

)
+1{g(x,y)<g(z,y)}

(
g(z, y)
µy

−
g(x, y)
µy

)
≤ 1{g(x,y)>g(z,y)}

(
f∆(x, y)
µy pE (ρ)

−
f∆(z, y)
µy pE (ρ)

+
h(z, y)(1 − pE (ρ))

pE (ρ)µy

)
+1{g(x,y)<g(z,y)}

(
f∆(z, y)
µy pE (ρ)

−
f∆(x, y)
µy pE (ρ)

+
h(x, y)(1 − pE (ρ))

pE (ρ)µy

)
≤

|q∆(y, x) − q∆(y, z)|
pE (ρ)

+
max{h(x, y), h(z, y)}(1 − pE (ρ))

pE (ρ)µy
.

Note that h(x, y) can be written as E[ f∆−τ (w, y) | τ < ∆], where τ is the first time Y exists
x + Qρ and w is the random vertex at the boundary of x + Qρ where Y is at time τ . Since
the weights µx,y satisfy (3) by Assumption 1, we have that f∆−τ (w,y)

µy
is at most some positive

constant c. This holds because either ∆− τ is larger than |w− y|, which allows us to apply heat
kernel bounds from Proposition 1, or ∆ − τ is smaller than |w − y| so f∆−τ (w, y) is bounded
above by the probability that a random walk jumps at least |w − y| steps in time ∆ − τ , which
is small enough since |w − y| is large. This gives that max{h(x,y),h(z,y)}

µy
is at most c. With this and

(19) we obtain that

max{h(x, y), h(z, y)}(1 − pE (ρ))
µy pE (ρ)

≤
cca

pE (ρ)
exp

{
−cbρ

2

∆

}
≤

cca

pE (ρ)
exp {−cbc2 log∆} .
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By (19) we can just bound pE (ρ) below by 1/2. Then, applying Proposition 5 to |q∆(y, x) −

q∆(y, z)|, and using Proposition 1 to bound the resulting supremum term, concludes the
proof. □

The next theorem is an adaptation of Theorem 4 for conditioned random walks. Note that we
need a stronger condition on K − K ′ below than in Theorem 4.

Theorem 5. Let µx,y satisfy Assumptions 1 and 2 and let c > 0 be an arbitrary constant. There
exist constants c0, c1, C > 0 such that the following holds. Fix large enough K > ℓ > 0 and
ϵ ∈ (0, 1). Consider the cube QK tessellated into subcubes (Ti )i of side length ℓ. Let (x j ) j ⊂ Q̃K

be the locations at time 0 of a collection of particles, such that each subcube T̃i contains at
least

∑
y∈T̃i

βµy particles for some β > 0. Assume that ℓ > Sd+1(x) for all x ∈ Q̃K and
sufficiently large so that

∑
y∈T̃i

βµy ≥ c for all subcubes T̃i . Let ∆ ≥ c0ℓ
2ϵ−4/Θ , where Θ is

as in Proposition 3. Fix K ′ > 0 such that K − K ′
≥ c1

√
∆ log∆. For each j , denote by Y j

the location of the j th particle at time ∆, conditioned on having displacement in QK−K ′ during
[0,∆]. Then there exists a coupling Q of an independent Poisson point process ψ with intensity
measure ζ (y) = β(1 − ϵ)µy , y ∈ Q̃K , and (Y j ) j such that within Q̃K ′ ⊂ Q̃K , ψ is a subset of
(Y j ) j with probability at least

1 −

∑
y∈Q̃K ′

exp
{
−Cβµyϵ

2∆d/2} .
Proof. Using Lemma 1 and (20) when setting κ , the proof goes in the same way as the proof of
Theorem 4. The independence from G outside of Q̃K follows from the fact that we only consider
particles which have displacement in QK−K ′ and ended in Q̃K ′ , so that they never left Q̃K during
[0,∆]. □

4.1. Extension to other graphs

We have shown that the local mixing result of Theorems 4 and 5 works for Zd , but they can
easily be extended to the more general graphs defined in Section 2, as long as Assumptions 1 and
2 hold.

We start with a region A ⊆ C∞ around the origin of G and tessellate it into tiles (Ti )i∈I of
diameter at most ℓ. Let ∆ be as in Theorem 4. Let A′

⊂ A be all the sites in A that are at least√
∆c1ϵ

−1/d
+ cℓ away from the boundary of A. Then, if A′ is not empty, using the same steps

as in the proof of Theorem 4, if each tile Ti of A contains at least β
∑

y∈Ti
µy particles at time 0,

it holds that in the region A′, there is a coupling with an independent Poisson point process ψ of
intensity measure ζ (y) = β(1 − ϵ)µy such that at time ∆ the particles inside A′ are contained in
ψ with probability at least

1 −

∑
y∈A′

exp
{
−Cβµyϵ

2∆d/2} ,
for some constant C > 0.

Furthermore, Theorem 5 can analogously be extended in the same way, if we require that A′

contains only sites that are at least c1
√
∆ log∆ away from the boundary of A, for some constant

c1, and if we condition the random walks to have their displacement limited to a ball of radius
c1
√
∆ log∆.
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5. Spread of the infection

Our goal in this section will be to use Theorem 5 in order to show that on the graph
G = (V, E) with V = Zd and E = {(x, y) : ∥x − y∥1 = 1}, and with µx,y , (x, y) ∈ E being
i.i.d. and satisfying (1), information spreads with positive speed in any direction, as claimed
in Theorems 1 and 2. In this setting, Proposition 5 guarantees that Assumption 1 holds with
S(x) ≡ 1 and since µx,y ̸= 0 for all (x, y) ∈ E , we also have that Assumption 2 holds.

Recall that we assume d ≥ 2. Tessellate Zd into cubes of side length ℓ, indexed by i ∈ Zd .
Next, tessellate time into intervals of length β, indexed by τ ∈ Z. With this we denote by the
space–time cell (i, τ ) ∈ Zd+1 the region

∏d
j=1[i jℓ, (i j + 1)ℓ] × [τβ, (τ + 1)β]. In the following,

β is set as a function of ℓ so that the ratio β/ℓ2 is fixed first to be a small constant, and then ℓ is
set sufficiently large.

We will use a result from [7] that gives the existence of a Lipschitz connected surface (cf.
Definitions 3 and 4) that surrounds the origin and which is composed of space–time cells, for
which a certain local event holds. This will allow us to obtain an infinite sequence of space–time
cells, such that the infection spreads from one cell to the next.

In order to obtain this result, we will need to consider overlapping space–time cells. Let
η ≥ 1 be an integer which will represent the amount of overlap between cells. For each cube
i = (i1, . . . , id ) and time interval τ , define the super cube i as

∏d
j=1[(i j −η)ℓ, (i j +η+ 1)ℓ] and

the super interval τ as [τβ, (τ + η)β]. We define the super cell (i, τ ) as the Cartesian product of
the super cube i and the super interval τ .

In the following we will say a particle has displacement inside X ′ during a time interval
[t0, t0 + t1], if the location of the particle at all times during [t0, t0 + t1] is inside x + X ′, where x
is the location of the particle at time t0. We define a particle system on Zd as a countable family
of not necessarily unique elements of Zd , indexed by some countable set I , representing the
locations of the particles belonging to the particle system. Let (Πs)s≥0 be a sequence of particles
system on Zd , with Πs representing the locations of the particles at time s. We say a particle
system Πs is distributed according to a Poisson random measure of intensity ζ , if for every
B ⊂ Zd , N (B) is a Poisson random variable with intensity ζ (B), where N (B) is the number of
particles belonging to Πs that lie in B. We say an event E is increasing for (Πs)s≥0 if the fact that
E holds for (Πs)s≥0 implies that it holds for all (Π ′

s )s≥0 for which Π ′
s ⊇ Πs for all s ≥ 0. We say

an event E is restricted to a region X ⊂ Zd and a time interval [t0, t1] if it is measurable with
respect to the σ -field generated by all the particles that are inside X at time t0 and their positions
from time t0 to t1. For an increasing event E that is restricted to a region X and time interval
[t0, t1], we have the following definition.

Definition 2. νE is called the probability associated to an increasing event E that is restricted to
X and a time interval [t0, t0 + t1] if, for an intensity measure ζ , νE (ζ, X, X ′, t1) is the probability
that E happens given that, at time t0, the particles in X are a particle system distributed according
to the Poisson random measure of intensity ζ and their motions from t0 to t0 + t1 are independent
continuous time random walks on the weighted graph (G, µ), where the particles are conditioned
to have displacement inside X ′.

For each (i, τ ) ∈ Zd+1, let Est(i, τ ) be an increasing event restricted to the super cube i and
the super interval τ . Here the subscript st refers to space–time. We say that a cell (i, τ ) is bad if
Est(i, τ ) does not hold and good otherwise.

We will need a different way to index space–time cells, which we refer to as the base-height
index. In the base-height index, we pick one of the d spatial dimensions and denote it as height,
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using index h ∈ Z, while the remaining d space–time dimensions form the base, which we index
by b ∈ Zd . In this way, for each space–time cell (i, τ ) there will be (b, h) ∈ Zd+1 such that the
base-height cell (b, h) corresponds to the space–time cell (i, τ ). In other words, the base-height
index is a (fixed) permutation of the coordinates of the space–time index which emphasizes
one of the coordinates (either spatial or time) by making it the last coordinate. We will use the
base-height index to define a d +1 dimensional object called the two-sided Lipschitz surface, for
which one of the coordinates plays a special role—we will use the coordinate h of the base-height
index for this purpose.

We analogously define the base-height super cell (b, h) to be the space–time super cell (i, τ ),
for which the base-height cell (b, h) corresponds to the space–time cell (i, τ ). Similarly, we
define Ebh(b, h), the increasing event restricted to the super cell (b, h) that is the same as the
event Est(i, τ ) for the space–time super cell (i, τ ) that corresponds to the base-height super cell
(b, h). Here, the subscript bh refers to the base-height index.

In order to prove Theorems 1 and 2, we will need a theorem from [7], which gives the
existence of a two-sided Lipschitz surface F .

Definition 3. A function F : Zd
→ Z is called a Lipschitz function if |F(x) − F(y)| ≤ 1

whenever ∥x − y∥1 = 1.

Definition 4. A two-sided Lipschitz surface F is a set of base-height cells (b, h) ∈ Zd+1 such
that for all b ∈ Zd there are exactly two (possibly equal) integer values F+(b) ≥ 0 and F−(b) ≤ 0
for which (b, F+(b)), (b, F−(b)) ∈ F and, moreover, F+ and F− are Lipschitz functions.

We say a space–time cell (i, τ ) belongs to F if there exists a base-height cell (b, h) ∈ F that
corresponds to (i, τ ). We say a two-sided Lipschitz surface F exists, if for all b ∈ Zd , we have
F+(b) < ∞ and F−(b) > −∞. For a positive integer D, we say a two-sided Lipschitz surface
surrounds a cell (b′, h′) at distance D if any path (b′, h′) = (b0, h0), (b1, h1), . . . , (bn, hn) for
which ∥(bi , hi ) − (bi−1, hi−1)∥1 = 1 for all i ∈ {1, . . . n} and ∥(bn, hn) − (b0, h0)∥1 > D,
intersects with F .

We now present the main result from our paper [7], which holds for graphs where a local
mixing result, such as the one in Theorem 5, hold. More precisely, for a graph satisfying
Assumption 1 and (1) (which implies Assumption 2 holds) we have that Theorem 5 holds (with
S(x) = 1 for all x ∈ V ), which in turn gives that the following result from [7] holds. Recall that,
for any ρ ≥ 2, Qρ stands for the cube [−ρ/2, ρ/2]d , and that λ is the intensity measure of the
Poisson point process of particles as defined in Section 1.

Theorem 6. Let G = ((Zd , E), µ) with d ≥ 2 be a nearest neighbor graph satisfying
Assumption 1 and (1). There exist positive constants c0, c1 and c2 such that the following holds.
Tessellate G in space–time cells and super cells as described above for some ℓ, β, η > 0 such
that the ratio β/ℓ2 < c0. Let Est(i, τ ) be an increasing event, restricted to the space–time super
cell (i, τ ). Fix ϵ ∈ (0, 1) and fix w such that

w ≥

√
ηβ

c2ℓ2 log
(

8c1

ϵ

)
.

Then, there exists a positive number α0 that depends on ϵ, η and that ratio β/ℓ2 so that if

min
{

C−1
M ϵ2λ0ℓ

d , log
(

1
1 − νEst ((1 − ϵ)λ, Q(2η+1)ℓ, Qwℓ, ηβ)

)}
≥ α0, (21)
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a two-sided Lipschitz surface F where Est(i, τ ) holds for all (i, τ ) ∈ F exists almost surely.
Furthermore, the surface surrounds the origin at a finite distance almost surely.

We now briefly explain the main conditions for the establishment of the above theorem.
We will fix β/ℓ2 to be an arbitrary, but small constant. The value of η defines the super
cubes, which just model how much overlap we need between the cells of the tessellation (to
allow information to propagate from one cell to its neighbors). Once these two parameters
are fixed, we need to satisfy (21). First we need C−1

M ϵ2λ0ℓ
d

≥ α0. After fixing ϵ, this can
be satisfied either by setting ℓ large enough (which makes the cells of the tessellation large),
or by assuming that the density of particles λ0 is large enough. Then we still need to make
νEst ((1 − ϵ)λ, Q(2η+1)ℓ, Qwℓ, β) ≥ 1 − exp(−α0). Usually Est is a local event that becomes more
and more likely by setting ℓ larger and larger; so having ℓ large enough suffices to satisfy this
condition as well. The value of ϵ > 0 is introduced so that in νEst we can consider a Poisson
point process of particles of intensity measure (1 − ϵ)λ, slightly smaller than the actual intensity
of particles. This slack is needed to restrict our attention to the particles that “behave well”.
Then the lower bound on w is to guarantee that, as particles move in Q(2η+1)ℓ for time β, with
high probability they do not leave Q(2η+1)ℓ+wℓ, allowing a better control of dependences between
neighboring cells of the tessellation.

Recall that we want to show that the infection spreads with positive speed. Given a space–time
tessellation of G and a local increasing event Est, Theorem 6 gives the existence of a Lipschitz
surface F on which Est holds. Let T = ℓ5/3. We will define the increasing event Est(i, τ ) to
represent a single infected particle in the middle of the super cube i at time τβ infecting a large
number of particles in that super cube by time τβ + T , after which the infected particles move
up to time (τ + 1)β, spreading to all of the cubes contained in the super cube.

Let (i, τ ) be a space–time cell as defined previously. We consider that there is an infected
particle in the center cube of the super cube i at time τβ, that is, the particle is inside∏d

j=1[i jℓ, (i j + 1)ℓ]. Starting from time τβ, we let the infected particle move and infect
sufficiently many other particles by time τβ + T . This is given in the lemma below.

Lemma 2. Let τ, i and η be fixed and let T = ℓ5/3 as above. There exist positive constant C1
such that the following holds for all large enough ℓ. Let Q∗

=
∏d

j=1[(i j − η)ℓ, (i j + η + 1)ℓ]
and let (ρ(t))τβ≤t≤τβ+T be the path of an infected particle that starts in

∏d
j=1[i jℓ, (i j + 1)ℓ] and

stays inside
∏d

j=1[(i j − η + 1)ℓ, (i j + η)ℓ] during [τβ, τβ + T ]. Assume that at time τβ, the
number of particles at each vertex x ∈ Q∗

\ ρ(τβ) is a Poisson random variable of mean λ0
2 µx .

Let Υ be the set of these particles, and let Υ ′
⊂ Υ be the particles colliding with the path ρ, that

is, for each particle of Υ ′ there exists a time t ∈ [τβ, τβ + T ] such that the particle is located
at ρ(t). Then, |Υ ′

| is a Poisson random variable of mean at least C1λ0ℓ
1/3.

Remark 4. We note that the statement of Lemma 2 is conditional on the path (ρ(t))τβ≤t≤τβ+T .
The bound we obtain is uniform across all such paths that we will consider later in Lemma 4, so
we omit this in our notation.

Proof. For each time t ∈ [τβ, τβ + T ], let Ψt be the Poisson point process on V giving the
locations at time t of the particles that belong to Υ . Since the particles that start in Q∗ move
around and can leave Q∗, we need to find a lower bound for the intensity of Ψt for times in
[τβ, τβ + T ]. Note that the infected particle we are tracking is not part of Ψ , since Ψ does not
include particles located at ρ(τβ) at time τβ.
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We will need to apply heat kernel bounds from Proposition 1 to the particles in Q∗, so we
need to ensure that the time intervals we consider are large enough for the proposition to hold.
We will only consider times t ∈ [ℓ4/3, T ] so that for large enough ℓ, t ≥ sup x∈Q∗

y∈Q∗

∥x − y∥1 and so

the heat kernel bounds from Proposition 1 hold. Then, we have that for all sites x ∈ Q∗ that are
at least ℓ away from the boundary of Q∗ and at any such time t the intensity of Ψτβ+t at vertex
x ∈ V is at least

ψ(x, τβ + t) ≥

∑
y∈Q∗

y ̸=ρ(τβ)

λ0
2 µy · µx qt (y, x) =

λ0
2 µx

∑
y∈Q∗

y ̸=ρ(τβ)

Px [Yt = y],

where we used in the last step that the heat kernel qt is symmetric. We now use the exit time
bound from Proposition 4 to get that∑

y∈Q∗

Px [Yt = y] ≥ 1 − c3 exp{−c4ℓ
2/t}.

Next, we use that Px [Yt = y] = µyqt (x, y) ≤ CMqt (x, y), and use Proposition 1 to account for
the particles at ρ(τβ), yielding∑

y∈Q∗

y ̸=ρ(τβ)

Px [Yt = y] ≥ 1 − c3 exp
{
−c4ℓ

2/t
}

− CM c5t−d/2.

This gives that for any t ∈ [ℓ4/3, T ], the intensity of Ψτβ+t is at least

ψ(x, τβ + t) ≥
λ0
2 µx (1 − c3 exp{−c4ℓ

2/T } − CM c5ℓ
−2d/3).

Let [τβ, τβ + T ] be divided into subintervals of length W ∈ (0, T ], where we set W = ℓ4/3

so that it is large enough to allow the use of the heat kernel bounds from Proposition 1. Let
J = {1, . . . , ⌊T/W⌋} and t j := τβ + jW . Then the intensity of particles that share a site with
the initially infected particle at least once among times {t1, t2, . . . , t⌊T/W⌋} is at least∑

j∈J

ψ(ρ(t j ), t j )Pρ(t j )[Yr−t j ̸= ρ(r ) ∀r ∈ {t j+1, . . . , t⌊T/W⌋}]

≥
λ0
2 C−1

M (1 − c3 exp{−c4ℓ
2/T } − CM c5ℓ

−2d/3)
∑
j∈J

⎛⎝1 −

∑
z> j

Pρ(t j )[Ytz−t j = ρ(tz)]

⎞⎠ .
We want to make all of the terms of the sum over J positive, so we consider the term∑
z> jPρ(t j )[X tz−t j = ρ(tz)] and show that it is smaller than 1

2 for large enough ℓ. To do this,
we use that Px [Yt = y] = µyqt (x, y) with the heat kernel bounds from Proposition 1, which
hold when W ≥ ℓ4/3 and ℓ is large enough, to bound it from above by∑

z> j

Pρ(t j )[Ytz−t j = ρ(tz)] ≤

∑
z> j

CMCH K (tz − t j )−d/2

≤ CMCH K W −d/2
T/W− j∑

z=1

z−d/2 (22)

where CH K is the constant coming from Proposition 1. Then, (22) can be bounded from above
by

CMCH K W −d/2

(
2 +

T/W− j∑
z=3

z−d/2

)
≤ CMCH K W −d/2

(
2 +

∫ T/W

2
z−d/2dz

)
. (23)
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Let C be a constant that can depend on CH K , CM and d . Then for d = 2, (23) it is smaller than
CW −1 log(T/W ), and for d ≥ 3 the expression in (23) is smaller than CW −d/2. Thus, setting ℓ
large enough, both terms are smaller than 1

2 .
Then, as a sum of Poisson random variables, we get that Υ ′ is a Poisson random variable with

a mean at least
λ0
2 C−1

M (1 − c3 exp{−2c4ℓ
2/T } − CM c5ℓ

−2d/3) T
2W .

Using that T = ℓ5/3 and setting ℓ large enough establishes the lemma, with C1 being any constant

satisfying C1 <
C−1

M
4 . □

Next we show that the particles from Lemma 2 move to nearby cells, spreading the infection.

Lemma 3. Let z = (z1, . . . , zd ) with z j ∈ {−η,−η + 1, . . . , η} for all j ∈ {1, . . . d}, and fix
the ratio β/ℓ2. Let A(i, τ, N , z) be the event that given a set of N > 0 particles in

∏d
j=1[(i j −

η)ℓ, (i j + η+ 1)ℓ] at time τβ + T , at least one of them is in
∏d

j=1[(i j + z j )ℓ, (i j + z j + 1)ℓ] at
time (τ + 1)β. Then, if ℓ is sufficiently large while keeping β/ℓ2 fixed, we obtain

P[A(i, τ, N , z)] ≥ 1 − exp{−Ncp},

where cp is a positive constant that is bounded away from 0 and depends only on d, η and the
ratio β/ℓ2.

Proof. Let Q∗
=
∏d

j=1[(i j −η)ℓ, (i j +η+1)ℓ] and Q∗∗
=
∏d

j=1[(i j + z j )ℓ, (i j + z j +1)ℓ]. For
t2/3

≥ sup x∈Q∗

y∈Q∗∗

∥x − y∥1, define pt := infx∈Q∗

∑
y∈Q∗∗Px [Yt = y]. Then, if we define bin(N , pt )

to be a binomial random variable of parameters N ∈ N and pt ∈ [0, 1], it directly follows that

P[A(i, τ, N , z)] ≥ P[bin(N , pt ) ≥ 1] ≥ 1 − exp{−N pt }.

It remains to show that for t = β − T , we have that pt ≥ cp > 0 for some constant cp.
We will use the heat kernel bounds for the pair x, y, which hold if ∥x − y∥

3/2
1 ≤ β − T for all

x ∈ Q∗, y ∈ Q∗∗. Given the ratio β/ℓ2, d and η, this is satisfied if ℓ is large enough. Then we
have that

pβ−T = inf
x∈Q∗

∑
y∈Q∗∗

Px [Yβ−T = y]

≥ inf
x∈Q∗

C−1
M

∑
y∈Q∗∗

qβ−T (x, y)

≥ inf
x∈Q∗

C−1
M

∑
y∈Q∗∗

c1β
−d/2 exp

{
−c2

∥x − y∥
2
1

β − T

}
.

Now we use that x and y can be at most cηℓ apart where cη is a constant depending on d and η
only, and that β − T ≥ β/2 for ℓ large enough. Hence,

pβ−T ≥ inf
x∈Q∗

C−1
M

∑
y∈Q∗∗

c1β
−d/2 exp

{
−c2

2(cηℓ)2

β

}

= C−1
M c1ℓ

d
(

1
β

)d/2

exp
{
−c2

2(cηℓ)2

β

}
≥ cp. □
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In the next lemma, we will tie together the results from Lemmas 2 and 3. In order to precisely
describe the behavior of the particles involved, we say a particle x collides with particle y during
a time interval [t0, t1], if for at least one t ∈ [t0, t1], x and y are at the same site.

Lemma 4. Consider the super cell (i, τ ). Assume that at each site x ∈
∏d

j=1[(i j − η)ℓ, (i j +

η + 1)ℓ] the number of particles at x at time τβ is an independent Poisson random variable
of intensity λ0

2 µx , and let Υ be the collection of such particles. Assume that, at time τβ, there
is at least one infected particle x0 inside

∏d
j=1[i jℓ, (i j + 1)ℓ]. Let Est(i, τ ) be the event that at

time (τ + 1)β, for all i ′
∈ Zd with ∥i − i ′

∥∞ ≤ η, there is at least one particle from Υ in∏d
j=1[(i ′

j )ℓ, (i ′

j + 1)ℓ] that collided with x0 during [τβ, τβ + T ]. If ℓ is sufficiently large for
Lemmas 2 and 3 to hold, then there exists a positive constant C such that

P[Est(i, τ )] ≥ 1 − exp{−Cλ0ℓ
1/3

}.

Proof. We note that, by definition, the event Est(i, τ ) is restricted to the super cube
∏d

j=1[(i j −

η)ℓ, (i j + η + 1)ℓ] and time interval [τβ, (τ + 1)β]. We define the following 3 events.

F1: The initial infected particle x0 never leaves
∏d

j=1[(i j − η + 1)ℓ, (i j + η − 1)ℓ] during
[τβ, τβ + T ].

F2: Let C1 be the constant from Lemma 2. During the time interval [τβ, τβ + T ] the initial
infected particle x0 collides with at least C1λ0ℓ

1/3

2 different particles from Υ that are in the
super cube Q∗∗

=
∏d

j=1[(i j − η)ℓ, (i j + η + 1)ℓ] at time τβ + T .

F3: Out of the C1λ0ℓ
1/3

2 or more particles from F2, at least one of them is in the cube∏d
j=1[(i j + k j )ℓ, (i j + k j + 1)ℓ] at time (τ + 1)β, for all k = (k1, . . . , kd ) for which∏d
j=1[(i j + k j )ℓ, (i j + k j + 1)ℓ] ⊂ Q∗∗.

By definition of the events, we clearly have that P[Est(i, τ )] ≥ P[F1 ∩ F2 ∩ F3].
Using Proposition 4 we have

P[F1] ≥ 1 − C2 exp{−C3ℓ
2/T } = 1 − C2 exp{−C3ℓ

1/3
} (24)

for some positive constants C2 and C3. We observe that F1 is restricted to the super cube∏d
j=1[(i j − η)ℓ, (i j + η + 1)ℓ] and the time interval [τβ, τβ + T ].
For the event F2, we apply Lemma 2 to get that the intensity of the Poisson point process

of particles that are in Q∗∗ at time τβ and collide with x0 during [τβ, τβ + T ] is at least
λ0C1ℓ

1/3 for some positive constant C1. Since every particle that collides with x0 enters∏d
j=1[(i j − η + 1)ℓ, (i j + η)ℓ] during [τβ, τβ + T ], we can use Proposition 4 to bound the

probability that the particle is inside of Q∗∗ at time τβ + T by

1 − Ca exp
{
−

Cbℓ
2

T

}
= 1 − Ca exp{−Cbℓ

1/3
},

for some positive constants Ca and Cb. This term can be made as close to 1 as possible by having
ℓ sufficiently large. We assume ℓ is large enough so that this term is larger than 2/3. This gives
that the intensity of the process of particles from Υ that collided with x0 during [τβ, τβ + T ]
and are in Q∗∗ at time τβ + T is at least

2λ0C1ℓ
1/3

3
.
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Using Chernoff’s bound (see Lemma 5) we have that

P[F2] ≥ 1 − exp{−(2/3)2C1λ0ℓ
1/3

}. (25)

Note that, by construction, F2 is restricted to the super cube Q∗∗ and the time interval
[τβ, τβ + T ]. Furthermore, F2 is clearly an increasing event.

We now turn to F3. Using Lemma 3, and a uniform bound across the number of cubes inside
a super cube, we have that

P[F3] ≥ 1 − (2η + 1)d exp{−
C1λ0ℓ

1/3

2
cp}, (26)

where cp is a small but positive constant. Again, the event is restricted to the super cube Q∗∗

and the time interval [τβ + T, (τ + 1)β] and is an increasing event. Taking the product of the
probability bounds in (24)–(26), we see that the probability that Est(i, τ ) holds is at least

1 − exp{−Cλ0ℓ
1/3

}

for some constant C and all large enough ℓ. □

Proof of Theorem 1. We start by using Theorem 6. Set η ∈ N such that η ≥ d and set ϵ = 1/2.
Fix the ratio β/ℓ2 small enough so that the lower bound for w is at most 2η + 1, and then set
w = 2η + 1. Assume ℓ is large enough so that Lemma 4 holds.

For each (i, τ ) ∈ Zd+1, define Est(i, τ ) as in Lemma 4. This event is increasing in the number
of particles, is restricted to the super cube i and time interval [τβ, (τ + 1)β], and satisfies

P[Est(i, τ )] ≥ 1 − exp{−Cλ0ℓ
1/3

},

for some constant C . Hence, letting λ/2 stand for the measure λ
2 (x) =

λ0µx
2 , we have

log

(
1

1 − νEst (
λ
2 , Q(2η+1)ℓ, Q(2η+1)ℓ, ηβ)

)
≥ Cλ0ℓ

1/3,

which increases with ℓ, as does the term ϵ2λ0ℓ
d in the condition of Theorem 6. Thus, setting ℓ

large enough, we apply Theorem 6 which gives the existence of a two-sided Lipschitz surface F ,
on which the event Est(i, τ ) holds. We also get that the surface is almost surely finite and that it
surrounds the origin.

We now proceed to argue that the existence of the surface F implies that the infection spreads
with positive speed. Since the two-sided Lipschitz surface F is finite and surrounds the origin,
we have that in almost surely finite time, an infected particle started from the origin will enter
some cube

∏d
j=1[i jℓ, (i j + 1)ℓ] for which (i, τ ) is in F . We call this the central cube of (i, τ ).

Once that holds, the starting assumption of Est(i, τ ) from Lemma 4 is satisfied for the super
cell (i, τ ), and the event Est(i, τ ) holds. By the definition of Est(i, τ ) this means that the initial
infected particle for the super cell (i, τ ) infects a large number of other particles, which spread
the infection to the central cube of (i ′, τ + 1) for all i ′

∈ Zd such that ∥i ′
− i∥∞ ≤ η.

Let (b, h) be the base-height index of the cell (i, τ ) ∈ F . Recall that h is one of the spatial
dimensions. We will also select one of the d − 1 spatial dimensions from b and denote it b1. Let
b′

∈ Zd be obtained from b by increasing the time dimension from τ to τ + 1, and by increasing
the chosen spatial dimension from b1 to b1 + 1. Since ∥b − b′

∥1 = 2, we can choose h′
∈ Z

such that (b′, h′) ∈ F and |h − h′
| ≤ 2, where the latter holds by the Lipschitz property of F .

Therefore, there must exist i ′
∈ Zd such that (i ′, τ+1) is the space–time super cell corresponding
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to (b′, h′) and ∥i − i ′
∥∞ ≤ 1. Hence, at time (τ + 1)β, there is an infected particle in the central

cube of the super cell i ′.
We can then recursively repeat this procedure for the super cell (i ′, τ + 1), since Est(i ′, τ + 1)

holds. Repeating this process we obtain that the infection spreads by a distance of at least ℓ in
time β in the chosen spatial direction. Consequently

lim inf
t→∞

∥It∥1

t
> 0 almost surely. □

In order to prove Theorem 2, we can follow the same steps as in the proof of Theorem 1 with
the additional consideration that we have to ensure that the relevant infected particles do not
recover too quickly. For that, we will require that all the particles involved do not recover for at
least β.

Proof Theorem 2. Recall the definition of Υ and ρ from Lemma 2 and of Est(i, τ ) from
Lemma 4. Let E ′

st(i, τ ) be the event that Est(i, τ ) holds, and that the particles in Υ and the
initial infected particle whose path is ρ do not recover during [τβ, (τ + 1)β]. Since each such
particle does not recover during [τβ, (τ + 1)β] with probability exp{−γβ}, for Lemma 2 we
consider that for each x ∈ Q∗

\ ρ(τβ) the number of particles at x at time τβ that do not recover
during [τβ, (τ + 1)β] is a Poisson random variable of intensity λ0

2 µx exp{−λβ}. Thus, once η, β
and ℓ are fixed, setting γ small enough gives that E ′

st(i, τ ) holds with probability at least

1 − (1 − exp{−γβ}) − exp{−Cλ0 exp{−γβ}ℓ1/3
}

for some positive constant C , where the term inside the parenthesis accounts of the probability
that the initial infected particles recover during [τβ, (τ + 1)β]. We now follow the same steps as
in the proof of Theorem 1 to get that the two-sided Lipschitz surface F on which the increasing
event E ′

st(i, τ ) holds exists, is finite and surrounds the origin almost surely. This gives that an
initially infected particle that is at the origin at time 0 has a strictly positive probability of
surviving long enough to enter a cell of the two-sided Lipschitz surface. Once on the surface,
the infection survives indefinitely by the definition of E ′

st(i, τ ). Hence

P [∥It∥1 ≥ c1t for all t ≥ c3] ≥ c2. □
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Appendix. Standard large deviation results

Lemma 5 (Chernoff Bound for Poisson). Let P be a Poisson random variable with mean λ.
Then, for any 0 < ϵ < 1,

P[P < (1 − ϵ)λ] < exp{−λϵ2/2}

and

P[P > (1 + ϵ)λ] < exp{−λϵ2/4}.
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