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Abstract. We study the weight-dependent random connection model, a
class of sparse graphs featuring many real-world properties such as heavy-
tailed degree distributions and clustering. We introduce a coefficient, δeff,
measuring the effect of the degree-distribution on the occurrence of long
edges. We identify a sharp phase transition in δeff for the existence of a
giant component in dimension d = 1.
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1 Introduction and Statement of Result

Complex real-world systems can be seen as a collection of numerous objects inter-
acting with each other in specific ways. This holds in many different contexts and
fields such as biology, physics, telecommunications, social sciences, information
technology and more. Put differently, many complex systems can be seen as a net-
work where the objects are described by the network’s nodes and a link between
two nodes in the network indicates the interaction between the corresponding
objects. Therefore, over the last 20 years complex networks have become a key
tool used to describe real-world systems and related problems. Despite the large
amount of uncertainty and complexity arising from their dynamical nature, it is
of great importance to understand the structure of the underlying network when
analysing a such a system. What kind of phenomena arise in the system and how
can they be explained by the way the network is built? These are typical questions
in the scientific community but which are also of public interest as their answers
may affect decisions made by political or economic leaders.

In recent years, the increase in computing power has made more and more
real-world networks amenable to empirical analysis. Most interestingly, despite
their different contexts, many such networks have similar structural properties,
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see e.g. [5,8]. Can these common structural features be explained in a simple
way by basic local principles which are shared by the different networks? Such
mechanisms are for instance [13]:

– Networks contain nodes that are far more influential than an average node;
the so called hubs or stars.

– Networks show strong clustering : Nodes sharing a common neighbour are
much more likely to be connected by an edge themselves than nodes that are
picked randomly.

Put differently, nodes prefer to connect to similar nodes or to highly influential
ones. Despite this, links between nodes that are neither similar nor influential
should still occasionally arise. We are interested in models based on these build-
ing principles and how classical properties of networks such as the degree distri-
bution, the size of the largest connected component or typical graph distances
are affected by them.

In this article, we present a class of models where the vertices are embedded
into Euclidean space and each vertex is given an independent weight. Here, the
spatial location of a vertex abstractly represents some intrinsic feature and spa-
tially close vertices can be seen as similar and eager to connect to each other.
The weight of a vertex represents its influence within the system. The connection
mechanism then depends on both weight and spatial distance, hence connections
to spatially close vertices or vertices with a large weight are more probable. The
introduction of weights guarantees heavy-tailed degree distributions leading to
the existence of hubs. The spatial embedding leads to clustering. However, the
connection mechanism is set up in a way that still allows far apart vertices hav-
ing only typical weights to occasionally connect. We call connections of the latter
type long-range connections. We introduce a coefficient, δeff, depending only on
basic model parameters, which quantifies the overall occurrence of long-range
connections in a way that makes it comparable to classical long-range percola-
tion without weights. In this standard model edges are present independently
from each other with a probability decaying polynomially in the distance of the
endpoints and it corresponds to a homogeneous version of our model. In the
present work we focus on the question of existence of a giant component in one
dimension, that is, a connected component whose size is of the same order as
the entire network. The geometric restrictions of one dimensional space make the
existence of a giant rather difficult to achieve. We shall see that the behaviour
of long-range percolation is paradigmatic for the models involving weights when
expressed in terms of δeff. Although we focus primarily on one dimension, δeff
also plays a significant role in higher dimensions, for example in providing a
sufficient criterion for the existence of subcritical percolation phases [24]. We
further believe that it also provides a sufficient criterion for transience of the
infinite limit of the giant cluster.

We note that δeff is a purely theoretical value determined by the network
topology that characterises the behaviour of certain useful properties as outlined
above. At this stage we are unable to provide any approaches for estimating δeff
using observed data. Any such method would need to take into account that δeff
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inherently involves multiple scales, as it describes the decay of edge probabilities
between aggregate vertex sets on increasingly larger scales. This contrasts with
the homogeneous case, in which the decay exponent can be estimated directly
from the empirical edge length distribution. We believe that estimating δeff is
an interesting statistical problem with potential applications in the analysis of
large scale networks.

1.1 The Weight-Dependent Random Connection Model

The weight-dependent random connection model is a class of infinite graphs on
the points of a Poisson point process on Rd × (0, 1) that has been intensively
studied in recent years [15–17]. In the present article we introduce a finite version
of the weight-dependent random connection model constructed on the unit torus
Td
1 = (−1/2, 1/2)d equipped with torus metric

d1(x, y) = min{|x − y + u| : u ∈ {−1, 0, 1}d}, for x, y ∈ Td
1

to avoid boundary effects. Here and throughout the paper | · | denotes the
Euclidean norm. For N > 0 and β > 0, we construct the graph G β

N in the
following way: The vertex set of G β

N is a Poisson point process XN of intensity
N on Td

1 × (0, 1). We denote a vertex by x = (x, tx) ∈ XN and call x ∈ Td
1

the location and tx ∈ (0, 1) the mark of the vertex. Given XN , each pair of
vertices x = (x, tx) and y = (y, ty) is connected independently by an edge with
probability

1 ∧
(
1
β (tx ∧ ty)γ(tx ∨ ty)αN d1(x, y)d

)−δ
, (1)

for γ ∈ [0, 1),α ∈ [0, 2 − γ) and δ > 1 where we denote with a ∧ b the minimum
and with a ∨ b the maximum of a and b.

Remark 1.

(i) As the typical distance of a point to its nearest neighbour in XN is of
order N−1/d, it is necessary to scale the distance by it to avoid that the
graph degenerates. Note that in law it is the same to construct the graph
on the points of a unit intensity Poisson process on the volume N torus
Td
N = (−N1/d/2, N1/d/2)d and replace N d1(x, y)d in (1) by dN (x, y)d, the

torus metric of Td
N .

(ii) The parameter β > 0 controls the edge intensity. Since x &→ 1∧x−δ is a non
increasing function, a larger value of β increases the connection probability
which then leads to more edges on average.

(iii) The parameters γ and α control the way of influence that vertex marks have
on the connection mechanism. By construction, connections to vertices with
a small mark are preferred, see also Fig. 2 below. The mark can therefore be
seen as the inverse weight of a vertex, giving the model its name. Various
choices of γ and α lead to (finite versions of) various models established in
the literature, see Table 1.
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Table 1. Various choices for γ, α and δ and the models they represent in their infinite
version. Here, to shorten notation, δ = ∞ represents models constructed with a function
ρ of bounded support, cf. Remark 1(iv).

Parameters Names and references

γ = 0,α = 0, δ = ∞ random geometric graph, Gilbert’s disc model [11]

γ = 0,α = 0, δ < ∞ random connection model [29,31], long-range percolation [32]

γ > 0,α = 0, δ = ∞ Boolean model [12,18], scale-free Gilbert graph [20]

γ > 0,α = 0, δ < ∞ soft Boolean model [14]

γ = 0,α > 1, δ = ∞ ultra-small scale-free geometric network [33]

γ > 0,α = γ, δ ≤ ∞ scale-free percolation [6,7], geometric inhomogeneous random
graphs [4]

γ > 0,α = 1 − γ, δ ≤ ∞ age-dependent random connection model [13]

(iv) The parameter δ controls the occurrence of long edges. The larger the value
of δ, the stronger the effect of the geometric embedding is and the less
long edges are present. One can replace the function 1 ∧ x−δ in (1) by a
non increasing function ρ : (0,∞) → [0, 1] and the geometric restrictions
become hardest when ρ is of bounded support. Results about such a model
can be derived from our model as a limit δ → ∞.

(v) The restrictions for γ,α and δ guarantee that
∫ 1

0
ds

∫ 1

t
dt

∫ ∞

0
dx

(
1 ∧

(
β−1sγtαx

)−δ
)
< ∞,

and therefore all expected degrees remain finite when N → ∞. Conse-
quently, the graph is sparse in the sense that the number of edges is of the
same order as the size of the graph.

For all choices of γ, δ and α, the above model converges to a local limit asN → ∞
[13,22], where the limiting graph G β = G β

∞ is constructed as follows: The vertex
set is given by a unit intensity Poisson process on Rd × (0, 1) and two given
points x = (x, tx) and y = (y, ty) are connected independently by an edge with
probability

1 ∧
(
1
β (tx ∧ ty)γ(tx ∨ ty)α|x − y|d

)−δ
. (2)

Here, the term local limit is to be understood in the following way: Add a vertex
0 = (0, U) at the origin to the graph having a uniform mark U and connect
it to all other vertices by rule (2). By Palm theory [27, Chapter 9] this is the
same as shifting the graph such that a typical vertex is located at the origin.
Then for each event A(0,G β

N ) depending on the origin and a bounded graph
neighbourhood of it in G β

N , we have

lim
N→∞

P(A(0,G β
N )) = P(A(0,G β

∞)).

Put differently, when the number of vertices N tends to infinity, the local neigh-
bourhoods in G β

N and G β
∞ look the same.



Emergence of a Giant Component 23

A similar modelling approach only using a different parametrisation is that
of “geometric inhomogeneous random graphs” [4,25] and their infinite volume
local limits. All appearing parameters in both approaches can be translated from
one model into the other [23].

The limiting graph can then directly be used to derive results for the (asymp-
totic) degree distribution and clustering since both depend only on graph neigh-
bourhoods of length at most two. The following theorem summarises results
from [13,28].

Theorem 1 (Degree distribution and clustering). Let G β
N be the weight-

dependent random connection model for some choice of δ > 1, γ ∈ [0, 1) and
α ∈ [0, 2 − γ).

(i) There exists a probability sequence (µk : k ≥ 0) such that in probability

lim
N→∞

1
N

∑

x∈G β
N

1{x has k neighbours in G β
N} = µk.

Moreover, for τ := 1 + (1/γ ∧ 1/(γ+α−1)+), we have

lim
k→∞

kτ+o(1)µk = 1.

(ii) Denote by V2(G β
N ) the set of vertices with at least two neighbours in G β

N . If
y and z are neighbours of a vertex x, we call {x,y, z} a triangle when also
y and z are connected by an edge. Then, there exists a positive constant c
depending only on the model parameters such that in probability

lim
N→∞

1
N

∑

x∈V2(G
β
N )

'{triangles containing x}
(&{neighbours of x}

2

) = c.

Theorem 1(i) shows that the degree distribution is heavy-tailed and therefore
G β
N contains the aforementioned hubs. Part (ii) shows that G β

N indeed exhibits
clustering.

From a modelling point of view, the weight-dependent random connection
model has the huge advantage that it allows a large flexibility in modelling
the way the weight influence the networks geometry. Moreover, sparseness of
the graph together with the conditional independence and the ranking of the
vertices by their marks can be used to construct the graph in linear time. The
following result is an adaption of [3].

Theorem 2. If γ > 0, then G β
N can be sampled in time O(N).

1.2 Main Result

More difficult than deriving the degree distribution or clustering of a network
is the question of the existence of a connected component of linear size. More
precisely, we say that G β

N contains a giant component if

lim
ε↓0

lim sup
N→∞

P('C (G β
N ) < εN) = 0,
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where C (G β
N ) denotes the largest connected component of G β

N and 'C (G β
N ) the

number of vertices within. Note that the existence of a giant component does
not only depend on bounded graph neighbourhoods but on the entire graph.
Therefore, the local limit structure cannot be used directly. However, it is known
that the existence of a giant is highly linked with the existence of an infinite
component in the limiting graph. Only when the limiting graph contains an
infinite component, a giant component can exist [21]. Our main theorem concerns
the existence of a giant component in dimension d = 1 where the existence of
infinite components in the limit is particularly hard due to the restrictions of the
real line R. For the standard long-range percolation model, i.e. the local limit of
our model for the choice of α = γ = 0, it is known that this question depends
on the occurrence of long-edges, measured by δ. More precisely, there exists an
infinite connected component in the limit for large enough β if δ ≤ 2 but there
does not exist such a component for all β if δ > 2 [1,30]. We now introduce the
effective decay exponent δeff, measuring the influence of the vertex weights on
the occurrence of long edges, as

δeff := lim
n→∞

log
∫ 1
1/n ds

∫ 1
s dt

(
1 ∧ (sγtαn)−δ

)

log n
. (3)

Theorem 3 (Existence vs. non existence of a giant). Let G β
N be the

weight-dependent random connection model in dimension d = 1.

(i) If δeff < 2, then the network G β
N contains a giant component for large enough

values of β.
(ii) If δeff > 2, then the limiting graph G β

∞ does not contain an infinite component
for any value of β and no giant component can exist in G β

N .

1.3 Examples

In this section we present and further discuss two particularly interesting exam-
ples covered by our framework.

Age-Based Spatial Preferential Attachment. This model can be seen as the most
natural model in our framework. It corresponds to the choice of γ > 0 and α =
1−γ. Its local limit is known under the name age-dependent random connection
model [13] and it is a type of preferential attachment model. In it, the marks
represent the vertices’ birth times and early birth times correspond to old hence
present for a long time vertices. As γ + α = 1, one can rewrite the connection
probability (1) by

1 ∧
(
1
β (Ntx ∧ Nty)γ(Ntx ∨ Nty)1−γ d1(x, y)d

)−δ
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x

y

z

x

y

z

Z(x, z)Rx

x

y

z

Z(y, z)Rz

Fig. 1. Example for the connection mechanism of the soft Boolean model in two dimen-
sions. The solid lines represent the graph’s edges.

and hence the model can also be constructed on a unit intensity Poisson process
on Td

1×(0, N). In this situation, vertices arrive after standard exponential waiting
times, justifying the notion of marks being birth times. Since

δeff

{
< 2, γ > 1 − 1

δ ,

= 2, γ ≤ 1 − 1
δ

,

the graph contains a giant component for sufficiently large β when γ > 1 − 1/δ.
From [16], we can derive that the critical value βc after which a giant exists
is larger than zero for γ < 1 − 1/(δ+1) and zero for γ > 1 − 1/(δ+1). The case
δeff = 2 is the boundary case which is not covered by our main theorem. However,
for γ = 1/2 the values of γ and α coincide and the minimum and maximum
structure in (2) reduces to the product

√
txty. Therefore, our model coincides

with a hyperbolic random graph model [26] for which the existence of a giant is
known for large enough β [2]. Hence, by a domination argument, the considered
model contains a giant component for all γ ≥ 1/2. It remains an interesting open
problem whether this remains true for γ ∈ (0, 1/2).

Soft Boolean Model. This model corresponds to the choice of γ > 0 and
α = 0. Following the representation of [14], each vertex x is assigned an
independent radius Rx := t−γ/d

x . Additionally, each potential edge {x, y} is
assigned an independent random variable Z(x, y) with tail-distribution func-
tion P(Z(x, y) ≥ z) = 1 ∧ z−δ. Given the vertices and the collection of Z(x, y),
two vertices in G β

N are connected by an edge, when

N1/d d1(x, y) ≤ β1/dZ(x, y)
(
Rx ∨ Ry

)
.

That is, the vertices share an edge when in the rescaled picture (cf. Remark 1(i)),
the vertex with smaller assigned radius is contained in the ball centered at the
stronger vertex with the assigned radius stretched by a heavy-tailed random
variable, cf. Fig. 1. For δ → ∞ one derives a version of the classical Boolean
model [20]. We calculate

δeff = 1 + δ(1 − γ)






< 2, γ > 1 − 1
δ ,

= 2, γ = 1 − 1
δ ,

> 2, γ < 1 − 1
δ .



26 P. Gracar et al.

Fig. 2. Two simulations for the (rescaled) soft Boolean model on the torus T1
100 with

δ = 3.5 and β = 1. The first picture was simulated with γ = 0.75, the second one with
γ = 0.51.

Therefore, the graph G β
N contains a giant component for large enough values of

β for γ > 1−1/δ but does not for γ < 1−1/δ, see also Fig. 2 for some simulations.

2 Proof of the Main Theorem

2.1 Some Construction and Notation

From now on, we work exclusively in dimension d = 1. We also work on the
rescaled picture based on Remark 1(i). Then the underlying vertex set of our
graphs can be constructed in the following way. We start with a vertex X0 = 0
placed at the origin. Let (Zi : i ∈ N) and (Z̃i : i ∈ N) be two independent
sequences of independent standard exponential random variables. For i ∈ N set
Xi =

∑i
j=1 Zj and for i ∈ Z\N0 set Xi = −

∑|i|
j=1 Z̃j . Then η0 := {Xi : i ∈ Z}

is the Palm version [27] of a unit intensity Poisson process on the real line where
a distinguished vertex is placed at the origin. We call η0 the vertex locations.
Note that we have Xi < Xj whenever i < j. Further, let T0 = (Ti : i ∈ Z) be
a sequence of independent Uniform(0, 1) random variables, independent of η0.
The elements of T0 are the vertex marks and we define

X0 =
(
Xi = (Xi, Ti) ∈ η0 × T0 : i ∈ Z

)
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the Palm version of the marked Poisson process which is our vertex set. Moreover,
define U0 = (Ui,j : i < j ∈ Z) another sequence of independent Uniform(0, 1)
random variables, which we call edge marks. Finally define for all i < j ∈ Z the
random variables

Ei,j := Ei,j(X0,U0) := 1{Ui,j<(β−1(Ti∧Tj)γ(Ti∨Tj)α)|Xi−Xj |)−δ}.

Note that the random variables (Ei,j : i < j ∈ Z) are only conditionally indepen-
dent given X0 but not in general. The graph G β := G β

∞(X0,U0) is then defined
through its vertex set X0 and (random) adjacency matrix (Ei,j : i < j ∈ Z).

As a Poisson process remains a Poisson process when restricted to an area,
the finite graphs G β

N can be constructed by the reduction of X0 and U0 to the
elements in (−N/2,N/2). Note that we may have changed the distance in the
connection probability from the torus metric to the Euclidean one. However,
Theorem 3(ii) only concerns the infinite model where no change is made and in
Theorem 3(i) edges may be removed from the graph due to the larger distances
at the boundary which makes the existence of a giant less likely.

Throughout the remaining text, we use the notation Xi ∼ Xj to denote the
event that Xi and Xj are connected by an edge. For two sets of vertices V1, V2,
we write V1 ∼ V2, if they are connected by a direct edge, i.e. there exist X ∈ V1

and Y ∈ V2 such that X ∼ Y. For two positive functions f and g, we write
f - g when f/g is bounded away from zero and infinity. We write f = o(g) if
f(x)/g(x) → 0 and f = O(g) if f(x)/g(x) → C < ∞ when x → ∞.

Finally, we say that an event A is increasing, if the function 1A increases
whenever additional vertices are added to the graph, vertex marks are decreased
(and hence the weights are increased) or edge marks are decreased (and hence
potentially more edges are added). For two such events A and B, the FKG-
inequality [10] in a version of [19] yields

P(A ∩ B) = E[P(A ∩ B | η)] ≥ E[P(A | η)P(B | η)] ≥ P(A)P(B). (4)

2.2 Connecting Far Apart Vertex Sets

To understand the role of δeff, one has to understand the influence of the vertex
marks to the occurrence of long edges. These are essential for large components in
dimension one as they are needed to overcome ’bad regions‘ where far less than
average vertices and edges are placed. For large n, the minimum of n indepen-
dent uniform random variables is roughly 1/n and consequently the double inte-
gral appearing in (3) is essentially the probability of two randomly picked vertices
from vertex sets of size n at distance roughly n being connected by an edge. Ignor-
ing additional correlations between edges and treating the randomvariablesEi,j as
independent, the expected number of edges is then roughly given by n2−δeff which
grows large for δeff < 2 but vanishes for δeff > 2. This heuristic is justified in the
following lemma which is formulated for one dimension but can be generalised to
higher dimensions. For its formulation we define the two sets of vertices

V n
( := {X−2n, . . . ,X−n−1} and V n

r := {Xn, . . . ,X2n−1}

which play the role of the two sets of size n at distance roughly n.
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Lemma 1.

(i) For each ε > 0, there exists µ ∈ (0, 1/2) and a constant C > 0 such that

P(V n
( /∼ V n

r ) ≤ exp
(

− Cn2−δeff−ε
)
+O

(
n1−µe−nµ)

.

(ii) For each ε > 0, there exists µ ∈ (0, 1/2) and constants C1, C2 > 0 such that

P(V n
( /∼ V n

r ) ≥ C1(1 − n−µ) exp
(

− C2n
2−δeff+ε

)

Proof. We start with the proof of (i). To control the influence of the vertex marks
and the random distances, we rely on some ’regular‘ behaviour of the underlying
point process. Let µ ∈ (0, 1/2) and define Nn

( (i) :=
∑−2n

j=−n−1 1{Tj≤i/"n1−µ#}. We
say that V n

( has µ-regular marks if

Nn
( (i) ≥ in

20n1−µ1 , for all i = 1, . . . , 0n1−µ1.

Using a standard Chernoff bound for independent uniforms together with the
union bound, we infer

P(V n
( is not µ-regular) = O(n1−µe−nµ

).

The same holds verbatim for V n
r . Moreover, standard large deviation results for

the sum of independent exponential random variables yields

P(|X2n−1 − X−2n| > 5n) ≤ e−const n.

Therefore, writing P̃ for P conditioned of µ-regular marks in V n
( and V n

r as well
as |X2n−1 − X−2n| ≤ 5n, we have

P(V n
( /∼ V n

r ) ≤ P̃(V n
( /∼ V n

r ) +O(n1−µe−nµ

). (5)

To calculate the conditional probability in (5), observe that for all givenXi ∈ V n
(

and Xj ∈ V n
r , we have, writing ρ(x) = 1 ∧ x−δ,

P̃(Ei,j = 0 | Xi,Xj) ≤ exp
(

− ρ
(
β−1(Ti ∧ Tj)γ(Ti ∨ Tj)α5n

))
.

Therefore, by writing Fn
i for the empirical distributions of the vertex marks in

V n
i , for i = *, r, we infer

P̃(V n
( /∼ V n

r ) = Ẽ
[ −2n∏

i=−n−1

2n−1∏

j=n

P̃(Ei,j = 0 | X0

)]

≤ Ẽ
[
exp

(
−

−2n∑

i=−n−1

2n−1∑

j=n

ρ
(
β−1(Ti ∧ Tj)γ(Ti ∨ Tj)α5n

))]

= Ẽ
[
exp

(∫ 1

0
Fn

( (dt)
∫ 1

0
Fn
r (ds) ρ

(
β−1(t ∧ s)γ(t ∨ s)α5n

))]
.
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By µ-regularity, we get by [17, Eq. (8)] that nFn
i (t) ≥ n

3 (t−nµ−1) and therefore
by a change of variables in the last integral we derive for some constant C > 0

P̃(V n
( /∼ V n

r ) ≤ exp
(

− Cn2

∫ 1−nµ−1

nµ−1
dt

∫ 1−nµ−1

t
ds

(
1 ∧ ( 5β t

γsαn)−δ
))

≤ exp
(

− Cn2−δeff−ε
)
,

where the last step follows by the fact that the order of the integral is driven
by the lower integration bound together with the continuity of the integral in µ.
This concludes the proof of (i).

The proof of (ii) works similarly. However, the definition of µ-regularity has
to be slightly changed. We now say the marks of V n

( are µ-regular if

(a) min
−2n≤j≤−n−1

Tj ≥ 2n−1−µ3 and

(b)
−2n∑

j=−n−1
1{Tj≤i/$n1−µ%} ≤ 2in

*n1−µ+

which holds with a probability of order 1 − n−µ. Using now a lower bound on
the distances and performing similar calculations as above yields (ii), cf. [17,
Lemma 4.1].

2.3 Existence of a Giant Component

In this section, we use a renormalisation scheme introduced by Duminil-Copin
et al. [9] for the existence of an infinite component in one-dimensional long-
range percolation on the lattice to construct a component growing linear with
a subsequence of (G β

N : N > 0) from which we derive the existence of a giant
component for large enough values of β whenever δeff < 2.

We start by defining the scales on which the renormalisation works. For some
K ∈ N, define (Kn : n ∈ N) by Kn := (n!)3 Kn. Define on each scale the blocks
of vertices

Bi
Kn

:= {XKn(i−1), . . . ,XKni, . . . ,XKn(i+1)−1}, i ∈ Z,

and we abbreviate BK = B0
K . Each of the scale n blocks consists of 2Kn vertices

and two consecutive blocks intersect on half of their points. We fix a ϑ > 3/4
and say that the block Bi

Kn
is ϑ-good if it contains a connected component of

density at least ϑ. Otherwise, we say the block is ϑ-bad. Note that due to the
overlapping property, the largest components of two consecutive ϑ-good blocks
intersect in at least one vertex.

Consider for some ϑ > 3/4 the sequence ϑn := ϑ− 2/(n3 K), where K is chosen
large enough to guarantee infn ϑn > 3/4. We want to bound the probability of
the scale n block BKn being ϑn-bad and we consider the scale n − 1 blocks
B−n3 K−1

Kn−1
, . . . , Bn3 K−1

Kn−1
contained in it. If all these blocks are ϑn−1-good so is

BKn by our choice of infm ϑm > 3/4. Therefore, either there must exist at least
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two disjoint ϑn−1-bad scale n − 1 blocks or there is one ϑn−1-bad block Bi
Kn−1

and all blocks disjoint from it are good. The first event is bounded by

P(∃ two disjoint ϑn−1-bad blocks) ≤ 2(n3 K)2P(BKn−1 is ϑn−1-bad)2. (6)

We denote the latter event by Ai and have

P({BKn is ϑn-bad} ∩ Ai)

≤ P(BKn−1 is ϑn−1-bad)
n3 K−1∑

|i|=0

P(BKn is ϑn-bad | Ai).
(7)

To calculate the conditional probability, observe that |i| /∈ {n3 K − 2, n3 K − 1}
since otherwise BKn would be ϑn-good by our choice of ϑn = ϑn−1 − 2/(n3 K).
Hence, by the overlapping property, there exists a connected component C i

( left
of the bad block and a connected component C i

r on the right, both of density at
least ϑn−1. Further, if both these clusters are connected by an edge, the whole
block BKn again is ϑn-good. Hence,

n3 K−1∑

|i|=0

P(BKn is ϑn-bad | Ai) ≤
n3 K−3∑

|i|=0

P(C i
( /∼ C i

r | Ai).

Let ϑ∗ := infm ϑm(> 3/4) and define the ’leftmost‘and’rightmost‘ vertices of BKn

by
V n

( (ϑ∗) := {X−Kn , . . . ,X−Kn+-ϑ∗Kn−1.−1} and

V n
r (ϑ∗) := {XKn−-ϑ∗Kn−1., . . . ,XKn−1}.

We claim P(C i
( /∼ C i

r | Ai) ≤ P(V n
( (ϑ∗) /∼ V n

r (ϑ∗)), see Lemma 2 below. Com-
bining this with (6) and (7), we infer for all n ≥ 2

P(BKn is ϑn-bad)

≤ P(BKn−1 is ϑn−1-bad)
(
2n3 K P(V n

( (ϑ∗) /∼ V n
r (ϑ∗))

)

+ 2(n3 K)2 P(BKn−1 is ϑn−1-bad)2

≤ P(BKn−1 is ϑn−1-bad)
(
2n3 K

(
exp(−CK2−δeff−ε

n−1 ) +O(K1−µ
n−1e

−Kµ
n−1)

))

+ 2(n3 K)2P(BKn−1 is ϑn−1-bad)2

≤ 1
100

P(BKn−1 is ϑn−1-bad) + 2(n3 K)2P(BKn−1 is ϑn−1-bad)2

(8)
for sufficiently large K and the right choice of ε and µ using δeff < 2. The second
inequality follows from Lemma 1(i) and the fact that Kµ−1

n−1 ≤ Kµ−1+ε′

n for large
enough K.

To deal with the first scale, we condition on |X−K−XK−1| < 5K which holds
with an error term exponentially small in K. We choose β > 5K so that for all
pairs of vertices X,Y of BK , on this event, we have β−1(Tx∧Ty)γ(Tx∨Ty)α|X−
Y | < 1 and therefore both vertices are connected by an edge by connection
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rule (2). Hence, on this event, the subgraph BK is complete. Combining this
with (8), we infer inductively for all n and large enough K

P(BKn is ϑn-bad) ≤ 1
400(n3 K)2

≤ 1
2
.

Now observe, that BKn is contained in the interval (−2Kn, 2Kn) with an error
term exponentially small in Kn and therefore uniformly

P('C (G β
2Kn

) ≥ 3
8Kn) ≥ 3

8

since ϑn ≥ ϑ∗ > 3/4. We have hence shown that for δeff < 2 and large enough
K and β, the largest connected component of the subsequence (G β

2Kn
: n ∈ N)

grows linearly in time. The existence of a giant component for the whole sequence
(G β

N : N ∈ N) is then simply a consequence of the ergodicity in our model, cf. [17,
Corollary 2.6].

It remains to prove the lemma used in the bound of (8).

Lemma 2. For all |i| ∈ {0, . . . , n3 K − 3}, we have

P(C i
( /∼ C i

r | Ai) ≤ P(V n
( (ϑ∗) /∼ V n

r (ϑ∗)).

Proof. To shorten notation, we abbreviate V( = V n
( (ϑ∗) and Vr = V n

r (ϑ∗). The
proof is based on the idea that belonging to the largest clusters in good boxes
gives negative information for not being connected compared to the uniform
(i.e. independently sampled) case. Observe first that on the event Ai, we have
'C i

( ≥ 'V( and 'C i
r ≥ 'Vr. Let I( be the (random) set of all indices belonging to

the vertices of C i
( ordered from smallest absolute value to largest and let Ir be the

same set for the indices of C i
r . Let further be J( a set of 'Vr-many indices chosen

independently from everything else and uniformly among all indices of vertices
in BKn left of the block Bi

Kn−1
and Jr be the same but for the indices on the

right side. Note that due to our construction, the indices are deterministically
given. To bound the probability of C i

( and C i
r not being connected by an edge,

we first choose a subset of smaller size 'V( = 'Vr uniformly from both clusters
and only ask that there is no edge connecting these. Note that choosing uniform
a subset of size 'V( from I( is the same as using the indices in J(, conditioned
on J( ⊂ I(. We infer

P(C i
( /∼ C i

r | Ai)

= P
( ⋂

i%∈I%

⋂

ir∈Ir

{Ei%,ir = 0}
∣∣∣ Ai

)

≤
P
(
{J( ⊂ I(} ∩ {Jr ⊂ Ir} ∩

( ⋂
i%∈J%

⋂
ir∈Jr

{Ei%,ir = 0}
) ∣∣∣ Ai

)

P({J( ⊂ I(} ∩ {Jr ⊂ Ir} | Ai)
.

Since ϑ∗ > 3/4, on the event Ai, the clusters C i
( and C i

r are the unique largest
clusters on the left and right of the blockBi

Kn−1
. Therefore, {J( ⊂ I(}∩{Jr ⊂ Ir}
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is an increasing event, since strengthening the vertices or adding more edges
increases the clusters. Note that adding additional vertices to X0 is equivalent
to bringing the vertices closer together which may then also lead to additional
edges. Conversely, the event {Ei,j = 0} is a decreasing event in the sense that
−1{Ei,j=0} is increasing. Therefore, the FKG-inequality (4) yields

P(C i
( /∼ C i

r | Ai) ≤ P
( ⋂

i%∈J%

⋂

ir∈Jr

{Ei%,ir = 0}
∣∣∣ Ai

)
.

Moreover, the existence of edges between vertices outside Bi
Kn

does not depend
on the vertices and edges within this block. Denoting by Ãi the increasing event
that all blocks disjoint from Bi

Kn
are good, another application of the FKG-

inequality yields

P(C i
! $∼ C i

r | Ai) ≤ P
( ⋂

i%∈J%

⋂

ir∈Jr

{Ei%,ir = 0}
∣∣∣ Ãi

)
≤ P

( ⋂

i%∈J%

⋂

ir∈Jr

{Ei%,ir = 0}
)
.

The vertices on the right-hand side are now chosen uniformly at random from all
vertices on the left resp. on the right of the bad block. The proof finishes with the
observation that in each such sample all vertices and edges have independent and
identically distributed marks so that the probability is increased when choosing
the left-most resp. right-most vertices maximising the distances between the
involved vertices.

2.4 Absence of an Infinite Component

The proof of non-existence of an infinite component for all β when δeff > 2 relies
on an edge counting argument. We say an edge crosses the origin if it connects a
vertex left of the origin with one of the right. Here, without loss of generality, we
consider X0 being right of the origin. We show that with a positive probability
no such crossing exists. By ergodicity this then holds true for edges crossing any
natural number and each component must be finite.

Define for each n ∈ N the disjoint sets

Γ (
n := {X−2n,...,X−1}, Γ ((

n := {X−2n+1 , . . . ,X−2n−1},
Γ r
n := {X0, . . . ,X2n−1}, Γ rr

n := {X2n , . . . ,X2n+1−1}.

We say a crossing of the origin occurs at stage

n = 1, if any edge connects the set Γ (
1 ∪ Γ ((

1 and Γ r
1 ∪ Γ rr

1 or at stage
n ≥ 2, if any edge connects either Γ ((

n and Γ rr
n or Γ ((

n and Γ rr
n or Γ (

n and Γ rr
n .

Note that any edges connecting Γ (
n and Γ r

n have already been considered at
an earlier stage.

Let χ(n) ∈ {0, 1} denote the indicator of the event that there is a crossing
occurring at stage n. Since the events {χ(n) = 0} are all decreasing and thus
positively correlated, we have

P
( ⋂

n∈N
{χ(n) = 0}

)
≥

∏

n∈N
P(χ(n) = 0).
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Since the product of the right-hand-side is strictly larger than zero if and only if
the sum of the probabilities of the complementary events {χ(n) = 1} converges,
the proof finishes by applying Lemma 1(ii) and δeff > 2 to

∑

n∈N
P(χ(n) = 1) ≤ P(χ(1) = 1) + 3

∑

n≥2

P(Γ ((
n ∼ Γ r

n).
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17. Gracar, P., Lüchtrath, L., Mönch, C.: Finiteness of the percolation threshold for
inhomogeneous long-range models in one dimension (2022). https://doi.org/10.
48550/ARXIV.2203.11966. https://arxiv.org/abs/2203.11966

18. Hall, P.: On continuum percolation. Ann. Probab. 13(4), 1250–1266 (1985).
http://links.jstor.org/sici?sici=0091-1798(198511)13:4〈1250:OCP〉2.0.CO;2-U&
origin=MSN

19. Heydenreich, M., van der Hofstad, R., Last, G., Matzke, K.: Lace expansion and
mean-field behavior for the random connection model (2020)

20. Hirsch, C.: From heavy-tailed Boolean models to scale-free Gilbert graphs. Braz.
J. Probab. Stat. 31(1), 111–143 (2017). https://doi.org/10.1214/15-BJPS305

21. van der Hofstad, R.: The giant in random graphs is almost local (2021). https://
doi.org/10.48550/ARXIV.2103.11733. https://arxiv.org/abs/2103.11733

22. van der Hofstad, R., van der Hoorn, P., Maitra, N.: Local limits of spatial inho-
mogeneous random graphs (2021). https://doi.org/10.48550/ARXIV.2107.08733.
https://arxiv.org/abs/2107.08733

23. van der Hofstad, R., van der Hoorn, P., Maitra, N.: Scaling of the clustering func-
tion in spatial inhomogeneous random graphs (2022). https://doi.org/10.48550/
ARXIV.2212.12885. https://arxiv.org/abs/2212.12885
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2016 (2021). https://doi.org/10.1214/21-AIHP1149
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